A086669 a(n) = number of divisors of n that are fundamental discriminants.
1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 1, 2, 2, 1, 1, 4, 1, 2, 2, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 1, 2, 2, 4, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 4, 4, 1, 2, 4, 2, 2, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2
Offset: 1
Keywords
Examples
10 has divisors 1, 2, 5 and 10 of which 1 and 5 are fundamental discriminants, so a(10)=2
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16385
Programs
-
PARI
for (n=1,100,s=0; fordiv(i=n,i,s+=isfundamental(i)); print1(","s))
-
PARI
A086669(n) = sumdiv(n, i, isfundamental(i)); \\ Antti Karttunen, Aug 22 2017
Formula
a(n) = Sum_{d|n} A290098(d).