A230243 Number of primes p < n with 3*p + 8 and (p-1)*n + 1 both prime.
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 1, 4, 2, 2, 4, 2, 3, 2, 4, 3, 4, 4, 2, 2, 2, 1, 5, 3, 4, 3, 3, 2, 3, 4, 2, 2, 4, 2, 4, 4, 1, 5, 3, 2, 6, 4, 1, 5, 6, 3, 3, 5, 1, 5, 5, 2, 7, 5, 3, 4, 4, 3, 4, 6, 3, 4, 6, 4, 5, 6, 3, 7, 4, 2, 6, 1, 3, 5, 9, 3, 3, 7, 4, 3, 7, 1, 6, 5, 5, 5, 6, 3, 6, 7
Offset: 1
Keywords
Examples
a(8) = 1 since 8 = 3 + 5 with 3, 3*3+8 = 17, (3-1)*8+1 = 17 all prime. a(17) = 1 since 17 = 7 + 10, and 7, 3*7+8 = 29, (7-1)*17+1 = 103 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[3Prime[i]+8]&&PrimeQ[(Prime[i]-1)n+1],1,0],{i,1,PrimePi[n-1]}] Table[a[n],{n,1,100}]
Comments