cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086752 Number of n X n matrices over GF(3) with rank n-1.

Original entry on oeis.org

1, 32, 8112, 17971200, 355207057920, 63010655570903040, 100505356319291594711040, 1442361950110091891786121216000, 186276322602412236974585775503690956800, 216505458700483736766078241517019274701019545600, 2264736353104098912130003755084217747715114856943819161600
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 31 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3^(n^2) * (1 - 1/3^n) * QPochhammer[1/3^n, 3, n-1]/2, {n, 1, 10}] (* Vaclav Kotesovec, Apr 14 2024 *)

Formula

For n>=2: a(n) = Product_{j=0..n-2} (3^n - 3^j)^2 / (3^(n-1)- 3^j).
a(n) = ((3^n-1)/2)*Product_{j=0..n-2} (3^n-3^j). - David Wasserman, Mar 28 2005

Extensions

More terms from David Wasserman, Mar 28 2005

A379105 Triangular array read by rows. T(n,k) is the number of n X n matrices T over GF(2) such that there are exactly 2^k vectors v in GF(2)^n with Tv=v, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 6, 9, 1, 168, 294, 49, 1, 20160, 37800, 7350, 225, 1, 9999360, 19373760, 4036200, 144150, 961, 1, 20158709760, 39687459840, 8543828160, 326932200, 2542806, 3969, 1, 163849992929280, 325139829719040, 71124337751040, 2812314375360, 23435953128, 42677334, 16129, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 15 2024

Keywords

Comments

Sum_{k=0..n} T(n,k)*2^k = (2^(n+1)-1)*2^(n^2-n) so that as n->oo the average number of fixed points is 2.
T(n,k) is also the number of n X n matrices over GF(2) with nullity k. As n->oo, the probability that a random n X n matrix over GF(q) has nullity k is 1/|GL_k(F_q)|*Product_{i>=k+1} (1 - 1/q^i). - Geoffrey Critzer, Dec 31 2024

Examples

			Triangle T(n,k) begins:
        1;
        1,        1;
        6,        9,       1;
      168,      294,      49,      1;
    20160,    37800,    7350,    225,   1;
  9999360, 19373760, 4036200, 144150, 961, 1;
  ...
		

Crossrefs

Cf. A060867 (T(n,n-1)), A002884 (column k=0), A086699 (column k=1), A346381, A286331.
Row sums give A002416.

Programs

  • Mathematica
    nn = 5; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] :=Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L=Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] :=  Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, L]]; Map[Select[#, # > 0 &] &,  Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0,nn}] CoefficientList[Series[g[u, 1, 1] g[u, v, 1] Product[g[u, 1, deg]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u,v}]] // Grid

Formula

T(n,k)=Product_{j=0..n-k-1} (2^n - 2^j)^2/(2^(n-k)-2^j). - Geoffrey Critzer, Dec 31 2024
Showing 1-2 of 2 results.