A086716 Convolution of triangular numbers with partition numbers.
1, 5, 15, 36, 75, 143, 255, 433, 707, 1119, 1725, 2602, 3851, 5607, 8046, 11399, 15963, 22123, 30369, 41328, 55792, 74763, 99496, 131566, 172931, 226027, 293864, 380160, 489480, 627428
Offset: 1
Keywords
Programs
-
Mathematica
s1=s2=s3=0;lst={};Do[AppendTo[lst,s3+=s2+=s1+=PartitionsP[n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 16 2009 *) Table[Sum[PartitionsP[k]*(n-k+1)*(n-k+2)/2,{k,1,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *)
Formula
a(n) = ((n+1)*(n+2)*(A000070(n)-1) - (2*n+3)*A182738(n) + A259279(n))/2. - Vaclav Kotesovec, Jun 23 2015
a(n) ~ 3*sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2)*Pi^3). - Vaclav Kotesovec, Jun 23 2015
Comments