cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086722 Decimal expansion of g(1)+g(2)-g(4)-g(5), where g(k) = Sum_{m>=0} (1/(6*m+k)^2).

Original entry on oeis.org

1, 1, 7, 1, 9, 5, 3, 6, 1, 9, 3, 4, 4, 7, 2, 9, 4, 4, 5, 3, 0, 0, 7, 8, 1, 1, 4, 4, 4, 3, 6, 1, 3, 8, 5, 3, 4, 5, 4, 7, 7, 0, 1, 5, 0, 4, 8, 1, 7, 9, 2, 8, 1, 3, 0, 3, 3, 3, 1, 5, 0, 0, 9, 4, 4, 5, 0, 3, 3, 0, 4, 7, 6, 9, 7, 7, 4, 2, 7, 3, 2, 7, 1, 3, 9, 3, 0, 4, 3, 5, 6, 2, 4, 8, 3, 1, 4, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

By summing over g(1)-g(5) and g(2)-g(4) separately we obtain A214552 for the first difference and a quarter of A086724 for the second difference. - R. J. Mathar, Jul 20 2012
2/3 times this constant equals A086724 [Bailey, Borwein and Crandall, 2006] - R. J. Mathar, Jul 20 2012

Examples

			1.1719536193447294453... = A214552 + A086724/4 = 1/1^2 +1/2^2 -1/4^2 -1/5^2 +1/7^2 +1/8^2 -1/10^2 -1/11^2 ++--....
		

References

  • L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    g[k_] := PolyGamma[1, k/6]/36; RealDigits[g[1] + g[2] - g[4] - g[5], 10, 99] // First (* Jean-François Alcover, Feb 12 2013 *)

Formula

Equals -Integral_{x=0..1} log(x)/(x^2-x+1) dx. - Jean-François Alcover, Aug 29 2014
Equals Integral_{x>=0} x/(exp(x) + exp(-x) - 1) dx. - Amiram Eldar, May 22 2023

A086729 Decimal expansion of Pi^2/72.

Original entry on oeis.org

1, 3, 7, 0, 7, 7, 8, 3, 8, 9, 0, 4, 0, 1, 8, 8, 6, 9, 7, 0, 6, 0, 3, 4, 5, 9, 7, 2, 2, 0, 5, 0, 2, 0, 9, 9, 1, 0, 1, 5, 7, 9, 1, 5, 8, 4, 3, 3, 8, 9, 9, 8, 6, 9, 8, 1, 1, 2, 9, 6, 5, 1, 9, 1, 1, 4, 1, 6, 7, 2, 8, 9, 2, 0, 0, 2, 6, 6, 7, 3, 9, 4, 8, 6, 1, 3, 5, 7, 4, 1, 7, 1, 8, 3, 1, 3, 2, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

The original name was: Decimal expansion of Sum_{m=0..infinity} 1/(6*m+3)^2.

Examples

			0.1370778389040188697...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A111003/9. - R. J. Mathar, Dec 18 2010
From Amiram Eldar, Jul 19 2020: (Start)
Sum_{k>=0} (1/(12*k+3)^2 + 1/(12*k+9)^2).
Equals Integral_{x=1..oo} log(1 + 1/x^6)/x dx. (End)
Equals A353908/2. - Omar E. Pol, May 12 2022

Extensions

New name after R. J. Mathar's Maple program. - Omar E. Pol, May 12 2022
Showing 1-2 of 2 results.