cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A086724 Decimal expansion of L(2, chi3) = g(1)-g(2)+g(4)-g(5), where g(k) = Sum_{m>=0} (1/(6*m+k)^2).

Original entry on oeis.org

7, 8, 1, 3, 0, 2, 4, 1, 2, 8, 9, 6, 4, 8, 6, 2, 9, 6, 8, 6, 7, 1, 8, 7, 4, 2, 9, 6, 2, 4, 0, 9, 2, 3, 5, 6, 3, 6, 5, 1, 3, 4, 3, 3, 6, 5, 4, 5, 2, 8, 5, 4, 2, 0, 2, 2, 2, 1, 0, 0, 0, 6, 2, 9, 6, 6, 8, 8, 6, 9, 8, 4, 6, 5, 1, 6, 1, 8, 2, 1, 8, 0, 9, 2, 8, 6, 9, 5, 7, 0, 8, 3, 2, 2, 0, 9, 8, 6, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

This number is L(2, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3, A102283. - Stuart Clary, Dec 17 2008
Equals 1/1^2 -1/2^2 +1/4^2 -1/5^2 +1/7^2 -1/8^2 +1/10^2 -1/11^2 +-... . This can be split as (1/1^2 -1/5^2 +1/7^2 -1/11^2 +-...) - (1/2^2 -1/4^2 +1/8^2 -1/10^2..) = (g(1)-g(5)) - (g(2)-g(4)). The first of these two series is A214552 and the second series is 1/(2^2)*(1-1/2^2 +1/4^2-1/5^2+-...), namely a quarter of the original series. Therefore 5/4 of this value here equals A214552. - R. J. Mathar, Jul 20 2012
Calegari, Dimitrov, & Tang prove that this number is irrational. - Charles R Greathouse IV, Aug 29 2024

Examples

			0.781302412896486296867...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Cf. A086722-A086731, A102283, A214549 (principal character), A214552.

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[(Zeta[2, 1/3] - Zeta[2, 2/3])/9, 10, nmax] ] (* Stuart Clary, Dec 17 2008 *)
  • PARI
    zetahurwitz(2,1/3)/9 - zetahurwitz(2,2/3)/9 \\ Charles R Greathouse IV, Jan 30 2018

Formula

From Jean-François Alcover, Jul 17 2014, updated Jan 23 2015: (Start)
Equals Sum_{n>=1} jacobi(-3, n+3)/n^2.
Equals (8/15)*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function.
Equals 4*Pi*log(3)/(3*sqrt(3)) - 4*Integral_{0..1} log(x+1)/(x^2-x+1) dx. (End)
Equals Product_{p prime} (1 - Kronecker(-3, p)/p^2)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^2)^(-1). - Amiram Eldar, Nov 06 2023

A086731 Decimal expansion of sum(1/(6*m+5)^2,m=0..infinity).

Original entry on oeis.org

0, 5, 9, 9, 9, 7, 3, 4, 7, 5, 5, 5, 7, 7, 1, 5, 4, 3, 2, 8, 2, 1, 4, 6, 2, 4, 5, 3, 6, 6, 9, 5, 0, 6, 7, 3, 6, 7, 8, 1, 0, 7, 6, 7, 3, 3, 9, 4, 7, 9, 6, 0, 9, 1, 6, 0, 6, 3, 7, 3, 5, 3, 7, 1, 0, 2, 3, 6, 4, 7, 9, 1, 3, 9, 3, 8, 0, 5, 5, 7, 1, 6, 3, 6, 4, 9, 9, 4, 8, 5, 1, 0, 3, 1, 2, 1, 7, 3, 8
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			0.05999734755577...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[1/36 PolyGamma[1,5/6],10,120][[1]]] (* Harvey P. Dale, Dec 15 2011 *)

A086729 Decimal expansion of Pi^2/72.

Original entry on oeis.org

1, 3, 7, 0, 7, 7, 8, 3, 8, 9, 0, 4, 0, 1, 8, 8, 6, 9, 7, 0, 6, 0, 3, 4, 5, 9, 7, 2, 2, 0, 5, 0, 2, 0, 9, 9, 1, 0, 1, 5, 7, 9, 1, 5, 8, 4, 3, 3, 8, 9, 9, 8, 6, 9, 8, 1, 1, 2, 9, 6, 5, 1, 9, 1, 1, 4, 1, 6, 7, 2, 8, 9, 2, 0, 0, 2, 6, 6, 7, 3, 9, 4, 8, 6, 1, 3, 5, 7, 4, 1, 7, 1, 8, 3, 1, 3, 2, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

The original name was: Decimal expansion of Sum_{m=0..infinity} 1/(6*m+3)^2.

Examples

			0.1370778389040188697...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A111003/9. - R. J. Mathar, Dec 18 2010
From Amiram Eldar, Jul 19 2020: (Start)
Sum_{k>=0} (1/(12*k+3)^2 + 1/(12*k+9)^2).
Equals Integral_{x=1..oo} log(1 + 1/x^6)/x dx. (End)
Equals A353908/2. - Omar E. Pol, May 12 2022

Extensions

New name after R. J. Mathar's Maple program. - Omar E. Pol, May 12 2022

A086730 Decimal expansion of sum(1/(6*m+4)^2,m=0..infinity).

Original entry on oeis.org

0, 8, 5, 1, 0, 7, 6, 5, 0, 2, 5, 9, 9, 6, 4, 3, 7, 2, 4, 9, 9, 6, 4, 7, 7, 0, 0, 9, 2, 4, 3, 2, 4, 5, 8, 7, 5, 8, 9, 7, 9, 7, 0, 8, 5, 8, 4, 3, 7, 0, 5, 8, 1, 5, 5, 5, 3, 9, 6, 6, 1, 8, 4, 2, 8, 1, 3, 6, 2, 1, 7, 9, 1, 8, 5, 5, 7, 0, 0, 4, 2, 0, 5, 3, 2, 3, 8, 9, 5, 9, 2, 7, 0, 3, 9, 1, 4, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			0.085107650259964...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

.085107650259964... = Psi'(2/3)/36 where Psi'(x) denotes the first derivative of the digamma function - R. Piyo (nagoya314(AT)yahoo.com), Dec 12 2004
8*Zeta(2)/9 = A214550 +4*(this constant) with Zeta(2) = A013661. - R. J. Mathar, Sep 15 2012

A214552 Decimal expansion of the Dirichlet L-series of the non-principal character mod 6 evaluated at s=2.

Original entry on oeis.org

9, 7, 6, 6, 2, 8, 0, 1, 6, 1, 2, 0, 6, 0, 7, 8, 7, 1, 0, 8, 3, 9, 8, 4, 2, 8, 7, 0, 3, 0, 1, 1, 5, 4, 4, 5, 4, 5, 6, 4, 1, 7, 9, 2, 0, 6, 8, 1, 6, 0, 6, 7, 7, 5, 2, 7, 7, 6, 2, 5, 0, 7, 8, 7, 0, 8, 6, 0, 8, 7, 3, 0, 8, 1, 4, 5, 2, 2, 7, 7, 2, 6, 1, 6, 0, 8, 6, 9, 6, 3, 5, 4, 0, 2, 6, 2, 3, 2, 6, 2, 7, 6, 3, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

The non-principal character is A134667. The constant is sum_{n>=1} A134667(n)/n^s with s=2.

Examples

			0.97662801612060787108398...= 1/1^2 -1/5^2 +1/7^2 -1/11^2 + 1/13^2 -1/17^2 +-...
		

Crossrefs

Programs

  • Maple
    evalf( (Psi(1,1/6)-Psi(1,5/6))/36) ;
  • Mathematica
    RealDigits[ (PolyGamma[1, 1/6] - PolyGamma[1, 5/6])/36, 10, 105] // First  (* Jean-François Alcover, Feb 11 2013, after R. J. Mathar *)

Formula

Equals 2/3*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function. - Jean-François Alcover, Dec 16 2014, after R. J. Mathar.
Equals A173973 / 3.6 . - R. J. Mathar, Jun 02 2016

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A086723 Decimal expansion of 1/(g(1)+g(2)-g(4)-g(5)), where g(k) = sum(1/(6*m+k)^2,m=0..infinity).

Original entry on oeis.org

8, 5, 3, 2, 7, 6, 0, 8, 8, 3, 1, 4, 0, 8, 0, 8, 0, 4, 4, 1, 0, 2, 8, 6, 6, 3, 2, 8, 9, 3, 9, 4, 8, 5, 9, 4, 3, 6, 8, 9, 7, 7, 1, 2, 8, 6, 1, 3, 7, 2, 3, 7, 1, 1, 9, 0, 0, 4, 7, 7, 3, 4, 5, 4, 2, 4, 8, 2, 2, 3, 8, 9, 6, 3, 0, 6, 2, 7, 6, 9, 5, 6, 2, 9, 2, 0, 6, 9, 0, 0, 1, 2, 2, 2, 7, 2, 7, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			.85327608831408080...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    g[k_] := PolyGamma[1, k/6]/36; First[ RealDigits[1/(g[1] + g[2] - g[4] - g[5]), 10, 99]] (* Jean-François Alcover, Feb 12 2013 *)

A086726 Decimal expansion of sum(1/(6*m)^2,m=1..infinity).

Original entry on oeis.org

0, 4, 5, 6, 9, 2, 6, 1, 2, 9, 6, 8, 0, 0, 6, 2, 8, 9, 9, 0, 2, 0, 1, 1, 5, 3, 2, 4, 0, 6, 8, 3, 4, 0, 3, 3, 0, 3, 3, 8, 5, 9, 7, 1, 9, 4, 7, 7, 9, 6, 6, 6, 2, 3, 2, 7, 0, 4, 3, 2, 1, 7, 3, 0, 3, 8, 0, 5, 5, 7, 6, 3, 0, 6, 6, 7, 5, 5, 5, 7, 9, 8, 2, 8, 7, 1, 1, 9, 1, 3, 9, 0, 6, 1, 0, 4, 4, 0, 8
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			.0456926129680062899...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[Pi^2/216,10,120][[1]]] (* Harvey P. Dale, Apr 30 2015 *)

Formula

Pi^2/216.

A086727 Decimal expansion of sum(1/(6*m+1)^2,m=0..infinity).

Original entry on oeis.org

1, 0, 3, 6, 6, 2, 5, 3, 6, 3, 6, 7, 6, 3, 7, 9, 4, 1, 4, 3, 6, 6, 1, 3, 0, 5, 3, 2, 3, 9, 7, 0, 6, 6, 1, 1, 9, 1, 3, 4, 5, 2, 5, 5, 9, 4, 0, 7, 6, 4, 0, 2, 8, 6, 6, 8, 8, 3, 9, 9, 8, 6, 1, 5, 8, 1, 0, 9, 7, 3, 5, 2, 2, 2, 0, 8, 3, 2, 8, 3, 4, 4, 2, 5, 2, 5, 8, 6, 4, 4, 8, 6, 4, 3, 3, 8, 4, 0, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			1.0366253636763794...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[PolyGamma[1, 1/6]/36, 100]][[1]]

A086728 Decimal expansion of sum(1/(6*m+2)^2,m=0..infinity).

Original entry on oeis.org

2, 8, 0, 4, 3, 3, 2, 5, 3, 4, 8, 4, 0, 8, 5, 9, 4, 6, 7, 1, 6, 4, 4, 4, 5, 5, 8, 3, 3, 0, 3, 4, 7, 6, 7, 6, 6, 8, 1, 0, 8, 0, 6, 6, 9, 9, 8, 0, 0, 2, 7, 1, 7, 0, 6, 0, 9, 4, 9, 1, 2, 0, 0, 0, 2, 3, 0, 8, 3, 9, 2, 5, 3, 4, 8, 4, 7, 4, 5, 9, 6, 5, 7, 6, 4, 5, 6, 3, 5, 1, 9, 7, 8, 4, 4, 3, 8, 6, 6
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			.2804332534840859467...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A214550 divided by 4. - R. J. Mathar, Sep 15 2012

A086725 Decimal expansion of 1/(g(1)-g(2)+g(4)-g(5)), where g(k) = Sum_{m>=0} 1/(6*m+k)^2.

Original entry on oeis.org

1, 2, 7, 9, 9, 1, 4, 1, 3, 2, 4, 7, 1, 1, 2, 1, 2, 0, 6, 6, 1, 5, 4, 2, 9, 9, 4, 9, 3, 4, 0, 9, 2, 2, 8, 9, 1, 5, 5, 3, 4, 6, 5, 6, 9, 2, 9, 2, 0, 5, 8, 5, 5, 6, 7, 8, 5, 0, 7, 1, 6, 0, 1, 8, 1, 3, 7, 2, 3, 3, 5, 8, 4, 4, 4, 5, 9, 4, 1, 5, 4, 3, 4, 4, 3, 8, 1, 0, 3, 5, 0, 1, 8, 3, 4, 0, 9, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Examples

			1.2799141324711212...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

  • Mathematica
    g[k_] := PolyGamma[1, k/6]/36; RealDigits[ 1/(g[1] - g[2] + g[4] - g[5]), 10, 99] // First (* Jean-François Alcover, Feb 13 2013 *)
Showing 1-10 of 11 results. Next