cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016922 a(n) = (6*n+1)^2.

Original entry on oeis.org

1, 49, 169, 361, 625, 961, 1369, 1849, 2401, 3025, 3721, 4489, 5329, 6241, 7225, 8281, 9409, 10609, 11881, 13225, 14641, 16129, 17689, 19321, 21025, 22801, 24649, 26569, 28561, 30625, 32761, 34969, 37249, 39601, 42025, 44521, 47089, 49729, 52441, 55225
Offset: 0

Views

Author

Keywords

Comments

Except for 2, exponents e such that x^e-x+1 is reducible.

Crossrefs

Cf. A000290, A005449, A086727, A016778 (bisection), A016921.

Programs

Formula

G.f.: ( 1+46*x+25*x^2 ) / (1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = A016921(n)^2 = A000290(A016921(n)). - Wesley Ivan Hurt, Dec 06 2013
a(n) = 24*A005449(n)+1. - Jean-Bernard François, Oct 12 2014
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Oct 13 2014
Sum_{n>=0} 1/a(n) = A086727. - Amiram Eldar, Nov 16 2020

A086729 Decimal expansion of Pi^2/72.

Original entry on oeis.org

1, 3, 7, 0, 7, 7, 8, 3, 8, 9, 0, 4, 0, 1, 8, 8, 6, 9, 7, 0, 6, 0, 3, 4, 5, 9, 7, 2, 2, 0, 5, 0, 2, 0, 9, 9, 1, 0, 1, 5, 7, 9, 1, 5, 8, 4, 3, 3, 8, 9, 9, 8, 6, 9, 8, 1, 1, 2, 9, 6, 5, 1, 9, 1, 1, 4, 1, 6, 7, 2, 8, 9, 2, 0, 0, 2, 6, 6, 7, 3, 9, 4, 8, 6, 1, 3, 5, 7, 4, 1, 7, 1, 8, 3, 1, 3, 2, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

The original name was: Decimal expansion of Sum_{m=0..infinity} 1/(6*m+3)^2.

Examples

			0.1370778389040188697...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A111003/9. - R. J. Mathar, Dec 18 2010
From Amiram Eldar, Jul 19 2020: (Start)
Sum_{k>=0} (1/(12*k+3)^2 + 1/(12*k+9)^2).
Equals Integral_{x=1..oo} log(1 + 1/x^6)/x dx. (End)
Equals A353908/2. - Omar E. Pol, May 12 2022

Extensions

New name after R. J. Mathar's Maple program. - Omar E. Pol, May 12 2022
Showing 1-2 of 2 results.