A016934 a(n) = (6*n + 2)^2.
4, 64, 196, 400, 676, 1024, 1444, 1936, 2500, 3136, 3844, 4624, 5476, 6400, 7396, 8464, 9604, 10816, 12100, 13456, 14884, 16384, 17956, 19600, 21316, 23104, 24964, 26896, 28900, 30976, 33124, 35344, 37636, 40000, 42436, 44944, 47524, 50176, 52900, 55696, 58564
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(6*n+2)^2: n in [0..50]]; // Vincenzo Librandi, May 04 2011
-
Mathematica
(6*Range[0,40]+2)^2 (* or *) LinearRecurrence[{3,-3,1},{4,64,196},40] (* Harvey P. Dale, Nov 22 2013 *)
-
PARI
a(n)=(6*n+2)^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
Sum_{n>=0} 1/a(n) = A086728. - Amiram Eldar, Nov 16 2020
From Stefano Spezia, Feb 21 2025: (Start)
G.f.: 4*(1 + 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 4*exp(x)*(1 + 15*x + 9*x^2). (End)
Comments