A086751 Decimal expansion of the solution to x*sqrt(1-x^2) + arcsin(x) = Pi/4, or the length of the line connecting the origin to the center of the chord of a circle, centered at 0 and of radius 1, that divides the circle such that 1/4 of the area is on one side and 3/4 is on the other side.
4, 0, 3, 9, 7, 2, 7, 5, 3, 2, 9, 9, 5, 1, 7, 2, 0, 9, 3, 1, 8, 9, 6, 1, 7, 4, 0, 0, 6, 6, 3, 1, 5, 4, 4, 2, 9, 0, 2, 2, 3, 5, 9, 6, 4, 5, 7, 4, 0, 9, 8, 4, 2, 2, 2, 5, 0, 0, 9, 7, 6, 0, 1, 7, 3, 3, 8, 7, 0, 5, 4, 9, 9, 7, 1, 2, 9, 5, 3, 5, 3, 5, 0, 1, 2, 4, 3, 3, 9, 0, 1, 6, 5, 2, 2, 2, 7, 2, 8, 7, 0, 9, 4, 9, 1
Offset: 0
Examples
0.403972753299517...
Links
- Robert P. P. McKone, Table of n, a(n) for n = 0..19999
Crossrefs
Cf. A003957.
Programs
-
Maple
Digits := 240 ; x := 0.4 ; for i from 1 to 8 do f := sin(2.0*x)+2.0*x-Pi/2.0 ; fp := 2*cos(2*x)+2.0 ; x := x-evalf(f/fp) ; printf("%.120f\n",sin(x)) ; od: x := sin(x) ; read("transforms3") ; CONSTTOLIST(x) ; # R. J. Mathar, May 19 2009
-
Mathematica
digits = 105; Sin[FindRoot[Sin[2*a]/2+a == Pi/4, {a, 1/2}, WorkingPrecision -> digits][[1, 2]]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
-
PARI
solve(x=0, 1, x*sqrt(1-x^2) + asin(x) - Pi/4) \\ Michel Marcus, May 05 2020
-
PARI
my(d=solve(x=0,1,cos(x)-x)); sqrt(2-2*sqrt(1-d^2))/2 \\ Gleb Koloskov, Jun 16 2021
Formula
Define k(n+1) as k(n) - (k(n)*sqrt(1-k(n)^2) + arcsin(k(n)) - Pi/4). The sequence is the decimal expansion of lim_{n -> infinity} k(n).
Equals sqrt(2-2*sqrt(1-d^2))/2, where d = A003957 is the Dottie number. - Gleb Koloskov, Jun 16 2021
Extensions
More terms from Jim Nastos, Sep 05 2003
More digits from R. J. Mathar, May 19 2009
Comments