cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086751 Decimal expansion of the solution to x*sqrt(1-x^2) + arcsin(x) = Pi/4, or the length of the line connecting the origin to the center of the chord of a circle, centered at 0 and of radius 1, that divides the circle such that 1/4 of the area is on one side and 3/4 is on the other side.

Original entry on oeis.org

4, 0, 3, 9, 7, 2, 7, 5, 3, 2, 9, 9, 5, 1, 7, 2, 0, 9, 3, 1, 8, 9, 6, 1, 7, 4, 0, 0, 6, 6, 3, 1, 5, 4, 4, 2, 9, 0, 2, 2, 3, 5, 9, 6, 4, 5, 7, 4, 0, 9, 8, 4, 2, 2, 2, 5, 0, 0, 9, 7, 6, 0, 1, 7, 3, 3, 8, 7, 0, 5, 4, 9, 9, 7, 1, 2, 9, 5, 3, 5, 3, 5, 0, 1, 2, 4, 3, 3, 9, 0, 1, 6, 5, 2, 2, 2, 7, 2, 8, 7, 0, 9, 4, 9, 1
Offset: 0

Views

Author

Jonathan R. Anderson (neo__jon(AT)hotmail.com), Jul 30 2003

Keywords

Comments

Decimal expansion of the number sin(u'), where u' is the number in [0,2 Pi] such that the line normal to the graph of y = sin x at (u', sin u') passes through the point (3 Pi/4,0). See A332500. - Clark Kimberling, May 05 2020

Examples

			0.403972753299517...
		

Crossrefs

Cf. A003957.

Programs

  • Maple
    Digits := 240 ; x := 0.4 ; for i from 1 to 8 do f := sin(2.0*x)+2.0*x-Pi/2.0 ; fp := 2*cos(2*x)+2.0 ; x := x-evalf(f/fp) ; printf("%.120f\n",sin(x)) ; od: x := sin(x) ; read("transforms3") ; CONSTTOLIST(x) ; # R. J. Mathar, May 19 2009
  • Mathematica
    digits = 105; Sin[FindRoot[Sin[2*a]/2+a == Pi/4, {a, 1/2}, WorkingPrecision -> digits][[1, 2]]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
  • PARI
    solve(x=0, 1, x*sqrt(1-x^2) + asin(x) - Pi/4) \\ Michel Marcus, May 05 2020
    
  • PARI
    my(d=solve(x=0,1,cos(x)-x)); sqrt(2-2*sqrt(1-d^2))/2 \\ Gleb Koloskov, Jun 16 2021

Formula

Define k(n+1) as k(n) - (k(n)*sqrt(1-k(n)^2) + arcsin(k(n)) - Pi/4). The sequence is the decimal expansion of lim_{n -> infinity} k(n).
Equals sqrt(2-2*sqrt(1-d^2))/2, where d = A003957 is the Dottie number. - Gleb Koloskov, Jun 16 2021

Extensions

More terms from Jim Nastos, Sep 05 2003
More digits from R. J. Mathar, May 19 2009