A086753 Number of distinct entries in a slice of A046816.
1, 1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 19, 21, 24, 25, 30, 32, 37, 40, 43, 46, 51, 56, 59, 64, 67, 75, 79, 83, 91, 93, 102, 108, 111, 119, 125, 131, 139, 147, 154, 160, 167, 175, 183, 189, 199, 206, 214, 225, 233, 243, 250, 261, 268, 279, 289, 298, 309, 317
Offset: 0
Keywords
Examples
The slice for n=4 is 1 4 4 6 12 6 4 12 12 4 1 4 6 4 1 with distinct entries 1,4,6,12, so a(4) = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
Crossrefs
Cf. A046816.
Programs
-
Maple
p:= proc(i, j, k) option remember; if i<0 or j<0 or k<0 or i>k or j>i then 0 elif {i, j, k}={0} then 1 else p(i, j, k-1) +p(i-1, j, k-1) +p(i-1, j-1, k-1) fi end: a:= n-> nops({seq(seq(p(i, j, n), j=0..i), i=0..n)}): seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2012 # seq(nops({coeffs(expand((x+y+z)^n))}), n = 0 .. 100); # César Eliud Lozada, Jul 02 2015 # seq(nops({seq(seq(n!/(i!*j!*(n-i-j)!),j=i..(n-i)/2),i=0..n/3)}), n=0..100); # Robert Israel, Jul 02 2015
-
Mathematica
Table[Length @ Union @ Flatten @ Table[Table[n!/(i!*j!*(n-i-j)!), {j, i, (n-i)/2}], {i, 0, n/3}], {n, 0, 100}] (* Jean-François Alcover, Mar 19 2019, after Robert Israel *)
-
PARI
{ pt=vector(40,i,matrix(i,i)); pt[1][1,1]=1; pt[2][1,1]=1; pt[2][2,1]=1; pt[2][2,2]=1; pt[3][1,1]=1; pt[3][2,1]=2; pt[3][2,2]=2; pt[3][3,1]=1; pt[3][3,2]=2; pt[3][3,3]=1; for (i=4,40, for (j=2,i-1, pt[i][j,1]=pt[i-1][j-1,1]+pt[i-1][j,1]; pt[i][j,j]=pt[i][j,1]; pt[i][i,j]=pt[i][j,1] ); pt[i][1,1]=1; pt[i][i,1]=1; pt[i][i,i]=1; for(j=3,i-1, for (k=2,j-1, pt[i][j,k]=pt[i-1][j,k]+pt[i-1][j-1,k]+pt[i-1][j-1,k-1]))); pt } { makept(x)=local(xl,v,vc,uc); xl=length(x); v=vector(xl*(xl+1)/2); vc=0; for (i=1,xl, for (j=1,i,v[vc++ ]=x[i,j])); v=vecsort(v); uc=1; for (i=2,length(v),if (v[i]!=v[i-1],uc++)); print1(","uc) } for (i=1,40,makept(pt([i]))
Extensions
More terms from Alois P. Heinz, Aug 14 2012
Comments