cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086791 Primes found among the numerators of the continued fraction rational approximations to e.

Original entry on oeis.org

2, 3, 11, 19, 193, 49171, 1084483, 563501581931, 332993721039856822081, 3883282200001578119609988529770479452142437123001916048102414513139044082579
Offset: 1

Views

Author

Cino Hilliard, Aug 04 2003; corrected Jul 24 2004

Keywords

Examples

			The first 8 rational approximations to e are 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71. The numerators 2, 3, 11, 19, 193 are primes.
		

Crossrefs

Programs

  • PARI
    \\ Continued fraction rational approximation of numeric constants f. m=steps.
    cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,",")); ) }
    
  • PARI
    default(realprecision,10^5);
    cf=contfrac(exp(1));
    n=0;
    { for(k=1, #cf,  \\ generate b-file
        pq = contfracpnqn( vector(k,j, cf[j]) );
        p = pq[1,1];  q = pq[2,1];
        if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086791
    \\    if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A094008
    ); }
    /* Joerg Arndt, Apr 21 2013 */