cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086812 Number of symmetric invertible n X n matrices over GF(2).

Original entry on oeis.org

1, 4, 28, 448, 13888, 888832, 112881664, 28897705984, 14766727757824, 15121129224011776, 30952951521552105472, 126783289432277424013312, 1038481923739784380093038592, 17014487838552627283444344291328
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003

Keywords

References

  • R. P. Brent and B. D. McKay, Determinants of random symmetric matrices over Zm, Ars Combinatoria, 26-A (1988) 57-64.

Crossrefs

Cf. A002884.

Programs

  • Maple
    for n from 1 to 31 do k := ceil(n/2); a[n] := 2^(n*(n+1)/2)*product(1-(1/2)^j,j=1..2*k)/product(1-(1/4)^j,j=1..k); od:seq(a[j],j=1..31); # Sascha Kurz, Sep 19 2003
  • Mathematica
    m = 14; For[n = 1, n <= m, n++, k = Ceiling[n/2]; a[n] = 2^(n*(n+1)/2)* Product[1-(1/2)^j, {j, 1, 2k}]/Product[1-(1/4)^j, {j, 1, k}]];
    Array[a, m] (* Jean-François Alcover, Feb 24 2019, from Maple *)

Formula

Let k = ceiling(n/2). Then a(n) = 2^(n*(n+1)/2) * (Product_{j=1..2k} (1 - (1/2)^j)) / Product_{j=1..k} (1 - (1/4)^j).

Extensions

More terms from Ray Chandler and Sascha Kurz, Sep 19 2003