cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087098 Partial sums of A087100.

Original entry on oeis.org

0, 1, 12, 15, 37, 44, 77, 92, 136, 167, 222, 285, 351, 478, 555, 810, 898, 1409, 1508, 2531, 2641, 4688, 4809, 8904, 9036, 17227, 17370, 33753, 33907, 66674, 66839, 132374, 132550, 263621, 263808, 525951, 526149, 1050436, 1050645, 2099220
Offset: 0

Views

Author

Jeremy Gardiner, Aug 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Rest[With[{nn=30},Riffle[2^Range[0,nn]-1,11Range[0,nn]]]]] (* Harvey P. Dale, Feb 13 2017 *)

Formula

From Chai Wah Wu, Feb 02 2021: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 5*a(n-4) + 5*a(n-5) + 2*a(n-6) - 2*a(n-7) for n > 6.
G.f.: x*(-22*x^3 - x^2 + 11*x + 1)/((x - 1)^3*(x + 1)^2*(2*x^2 - 1)). (End)

A087099 Partial sums of A063914.

Original entry on oeis.org

1, 3, 6, 11, 16, 24, 31, 42, 51, 65, 76, 93, 106, 126, 141, 164, 181, 207, 226, 255, 276, 308, 331, 366, 391, 429, 456, 497, 526, 570, 601, 648, 681, 731, 766, 819, 856, 912, 951, 1010, 1051, 1113, 1156, 1221, 1266, 1334, 1381, 1452, 1501, 1575, 1626
Offset: 1

Views

Author

Jeremy Gardiner, Aug 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=50},Accumulate[Riffle[Range[1,2*nn,2],3*Range[0,nn]+2]]] (* Harvey P. Dale, Jul 25 2013 *)

Formula

From Chai Wah Wu, Feb 02 2021: (Start)
a(n) = 2*a(n-2) - a(n-4) for n > 4.
G.f.: x*(x^3 + x^2 + 2*x + 1)/((x - 1)^2*(x + 1)^2). (End)

A087100 A000225 (2^n - 1) interlaced with A008593 (11n).

Original entry on oeis.org

0, 1, 11, 3, 22, 7, 33, 15, 44, 31, 55, 63, 66, 127, 77, 255, 88, 511, 99, 1023, 110, 2047, 121, 4095, 132, 8191, 143, 16383, 154, 32767, 165, 65535, 176, 131071, 187, 262143, 198, 524287, 209, 1048575, 220, 2097151, 231, 4194303, 242, 8388607, 253
Offset: 0

Views

Author

Jeremy Gardiner, Aug 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[With[{nn=30},Riffle[2^Range[0,nn]-1,11Range[0,nn]]]] (* Harvey P. Dale, Aug 15 2011 *)

Formula

From Chai Wah Wu, Feb 02 2021: (Start)
a(n) = 4*a(n-2) - 5*a(n-4) + 2*a(n-6) for n > 5.
G.f.: x*(22*x^3 + x^2 - 11*x - 1)/((x - 1)^2*(x + 1)^2*(2*x^2 - 1)). (End)
Showing 1-3 of 3 results.