cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086853 Number of permutations of length n with exactly 2 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 2, 10, 48, 256, 1670, 12846, 112820, 1108612, 12032154, 142852450, 1840969784, 25587270600, 381460235918, 6071318154166, 102742200205980, 1841978156709676, 34874169034136930, 695294184953602602, 14560120360421802464, 319510983674891800240
Offset: 0

Views

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

Permutations of 12...n such that exactly 2 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> ceil(coeff(S(n), t, 2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    s[n_] := s[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*s[n-1] - (1-t)*(n-2+3*t)*s[n-2] - (1-t)^2*(n-5+t)*s[n-3] + (1-t)^3*(n-3)*s[n-4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; a[n_] := t[n, 2]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

Coefficient of t^2 in S[n](t) defined in A002464.
Conjecture: (-514*n+2465)*a(n) +2*(257*n^2-955*n-1085)*a(n-1) +(-555*n^2+2483*n-1670)*a(n-2) +16*(-17*n^2+73*n-75)*a(n-3) +(354*n^2+528*n-2299)*a(n-4) +2*(-121*n^2+1045*n-1401)*a(n-5) +3*(67*n-115)*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 06 2013
shorter recurrence: (n-3)*(n-2)*(n-4)^3*a(n) = (n-3)*(n^4-9*n^3+23*n^2-4*n-29)*(n-4)*a(n-1) - (n-1)*(n^4-12*n^3+57*n^2-125*n+104)*(n-4)*a(n-2) - (n-2)*(n-1)*(n^4-15*n^3+83*n^2-198*n+169)*a(n-3) + (n-3)^3*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
a(n) ~ 2*exp(-2) * n!. - Vaclav Kotesovec, Aug 10 2013