cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086855 Number of permutations of length n with exactly 4 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 22, 226, 2198, 22120, 236968, 2732268, 33940644, 453148422, 6480322210, 98907371822, 1605581578202, 27631315113916, 502618772515748, 9637245372790760, 194291040277517688, 4109014039030693578, 90968013940830446574, 2104072961763468757082
Offset: 0

Views

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

Permutations of 12...n such that exactly 4 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Twice A001268.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> ceil(coeff(S(n), t, 4)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 4]]; Table [a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

Coefficient of t^4 in S[n](t) defined in A002464.
a(n) ~ 2/3*exp(-2) * n!. - Vaclav Kotesovec, Aug 14 2013