A086864 a(n) = (n-1)*(n-2)*(n-3)*(3*n-10)*3^(n-5)/4.
0, 0, 0, 1, 30, 360, 2970, 19845, 115668, 612360, 3018060, 14073345, 62788770, 270208224, 1128426390, 4594307445, 18302828040, 71553216240, 275154640632, 1042806816225, 3901324324230, 14427539010360, 52801538445810, 191427950399301, 688082033693340
Offset: 1
References
- L. Ericson et al., Enumeration of tree properties..., Algorithms Review, 1 (1990), 119-124.
Links
- Index entries for linear recurrences with constant coefficients, signature (15,-90,270,-405,243).
Programs
-
Mathematica
Table[((n-1)(n-2)(n-3)(3n-10)3^(n-5))/4,{n,30}] (* or *) LinearRecurrence[ {15,-90,270,-405,243},{0,0,0,1,30},30] (* Harvey P. Dale, May 15 2015 *)
Formula
G.f.: x^4*(15*x+1)/(1-3*x)^5 [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=30, a(n)=15*a(n-1)-90*a(n-2)+ 270*a(n-3)- 405*a(n-4)+243*a(n-5). - Harvey P. Dale, May 15 2015
Extensions
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
Definition clarified by Harvey P. Dale, May 15 2015