cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086870 Primes equal to a product of twin primes minus 1 divided by 2.

Original entry on oeis.org

7, 17, 71, 449, 881, 2591, 9521, 39761, 106721, 179999, 206081, 342791, 388961, 596231, 847601, 1292831, 2268449, 2571911, 2836961, 3612671, 6223391, 6329681, 6415361, 8520191, 8946449, 9409121, 10342151, 12550049, 16485281, 18800711
Offset: 1

Views

Author

Cino Hilliard, Aug 20 2003

Keywords

Comments

From Jason Kimberley, Oct 22 2015 (Start)
Prime elements of A120876.
For each p in this list, A001221(2p) = A001222(2p) = A001221(2p+1) = A001222(2p+1) = 2.
2*a(n) is a subsequence of A103533. They first differ when 313619 is not in this sequence, but 2*313619 = 627238 = A103533(12).
(End)

Examples

			t1 = 71,t2 = 73, (71*73-1)/2 = 5182/2 = 2591 = prime.
		

Crossrefs

Programs

  • Mathematica
    Select[(Times[#, # + 2] - 1)/2 &@ Select[Prime@ Range@ 1000, PrimeQ[# + 2] &], PrimeQ] (* Michael De Vlieger, Nov 06 2015 *)
  • PARI
    for(n=1, 1e3, if(prime(n+1)-prime(n)==2 && isprime(k=(prime(n)*prime(n+1)-1)/2), print1(k", "))) \\ Altug Alkan, Nov 06 2015

Formula

Primes of the form (t1*t2-1)/2, where t1, t2 are twin primes.