A086904 Write the primes in binary; a(n) = total number of 0's in those which have an n-bit expansion.
1, 1, 2, 7, 13, 35, 71, 147, 298, 622, 1270, 2558, 5257, 10509, 21297, 42852, 86258, 173528, 348187, 699590, 1404936, 2818606, 5657411, 11345622, 22746823, 45605127, 91421299, 183206338, 367111951, 735525895, 1473503602, 2951661316, 5911864292, 11840082252
Offset: 2
Examples
a(2) = 1: 2 = 10 and 3 = 11, with a total of one 0. a(3) = 1: 5 = 101, 7 = 111, again with just one 0.
Crossrefs
Cf. A168156.
Programs
-
Mathematica
a[n_] := Sum[If[PrimeQ[k], DigitCount[k, 2, 0], 0], {k, 2^(n - 1), 2^n - 1}]; Array[a, 20, 2] (* Amiram Eldar, Jan 11 2020 *)
-
PARI
a(n) = {nb = 0; for (i=2^(n-1), 2^n-1, if (isprime(i), nb += n - norml2(binary(i)));); return (nb);} \\ Michel Marcus, Jun 20 2013
Extensions
a(27)-a(35) from Amiram Eldar, Jan 11 2020