A086928 a(n) = 12*a(n-1) + a(n-2), with a(0) = 2 and a(1) = 12.
2, 12, 146, 1764, 21314, 257532, 3111698, 37597908, 454286594, 5489037036, 66322731026, 801361809348, 9682664443202, 116993335127772, 1413602685976466, 17080225566845364, 206376309488120834
Offset: 0
Examples
a(4) = 21314 = 12*a(3) + a(2) = 12*1764 + 146 = (6+sqrt(37))^4 + (6-sqrt(37))^4 = 21313.999953 + 0.000047 = 21314.
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (12,1).
Crossrefs
Cf. A001927.
Programs
-
Mathematica
LinearRecurrence[{12,1},{2,12},20] (* Harvey P. Dale, Oct 31 2016 *)
Formula
a(n) = (6+sqrt(37))^n + (6-sqrt(37))^n.
G.f.: (2-12*x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
Comments