A086937 Number of distinct zeros of x^2-x-1 mod prime(n).
0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2
Offset: 1
Keywords
Links
- J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 433.
Programs
-
Mathematica
Table[p=Prime[n]; cnt=0; Do[If[Mod[x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* T. D. Noe, Sep 24 2003 *)
Formula
If p = prime(n), a(n) = A080891(p) + 1.
Extensions
Corrected and extended by T. D. Noe, Sep 24 2003
Comments