cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A087097 Lunar primes (formerly called dismal primes) (cf. A087062).

Original entry on oeis.org

19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, 219, 309, 319, 329, 409, 419, 429, 439, 509, 519, 529, 539, 549, 609, 619, 629, 639, 649, 659, 709, 719, 729, 739, 749, 759, 769, 809, 819, 829, 839, 849, 859, 869, 879, 901, 902, 903, 904, 905, 906, 907, 908, 909, 912, 913, 914, 915, 916, 917, 918, 919, 923, 924, 925, 926, 927, 928, 929, 934, 935, 936, 937, 938, 939, 945, 946, 947, 948, 949, 956, 957, 958, 959, 967, 968, 969, 978, 979, 989
Offset: 1

Views

Author

Marc LeBrun, Oct 20 2003

Keywords

Comments

9 is the multiplicative unit. A number is a lunar prime if it is not a lunar product (see A087062 for definition) r*s where neither r nor s is 9.
All lunar primes must contain a 9, so this is a subsequence of A011539.
Also, numbers k such that the lunar sum of the lunar prime divisors of k is k. - N. J. A. Sloane, Aug 23 2010
We have changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014
(Lunar) composite numbers are not necessarily a product of primes. (For example 1 = 1*x for any x in {1, ..., 9} is not a prime but can't be written as the product of primes.) Therefore, to establish primality, it is not sufficient to consider only products of primes; one has to consider possible products of composite numbers as well. - M. F. Hasler, Nov 16 2018

Examples

			8 is not prime since 8 = 8*8. 9 is not prime since it is the multiplicative unit. 10 is not prime since 10 = 10*8. Thus 19 is the smallest prime.
		

Crossrefs

Programs

  • PARI
    A87097=select( is_A087097(n)={my(d); if( n<100, n>88||(n%10==9&&n>9), vecmax(d=digits(n))<9, 0, #d<5, vecmin(d)A087062(m,k)==n&&return))))}, [1..999]) \\ M. F. Hasler, Nov 16 2018

Formula

The set { m in A011539 | 9A054054(m) < min(A000030(m),A010879(m)) } (9ish numbers A011539 with 2 digits or such that the smallest digit is strictly smaller than the first and the last digit) is equal to this sequence up to a(1656) = 10099. The next larger 9ish number 10109 is also in that set but is the lunar square of 109, thus not in this sequence of primes. - M. F. Hasler, Nov 16 2018

A059729 Carryless squares n X n base 10.

Original entry on oeis.org

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 100, 121, 144, 169, 186, 105, 126, 149, 164, 181, 400, 441, 484, 429, 466, 405, 446, 489, 424, 461, 900, 961, 924, 989, 946, 905, 966, 929, 984, 941, 600, 681, 664, 649, 626, 605, 686, 669, 644, 621, 500, 501, 504, 509, 506, 505
Offset: 0

Views

Author

Henry Bottomley, Feb 20 2001

Keywords

Examples

			a(87) is carryless sum of (6)400, (5)60, (5)60 and (4)9, i.e., 400+20+9 = 429.
		

Crossrefs

See A087019 (lunar squares) for another version.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^2)%10) \\ Ruud H.G. van Tol, Dec 07 2022
  • Python
    def A059729(n):
        s = [int(d) for d in str(n)]
        l = len(s)
        t = [0]*(2*l-1)
        for i in range(l):
            for j in range(l):
                t[i+j] = (t[i+j] + s[i]*s[j]) % 10
        return int("".join(str(d) for d in t)) # Chai Wah Wu, Jun 29 2020
    

A342768 a(n) = A342767(n, n).

Original entry on oeis.org

1, 2, 3, 8, 5, 12, 7, 32, 27, 20, 11, 48, 13, 28, 45, 128, 17, 108, 19, 80, 63, 44, 23, 192, 125, 52, 243, 112, 29, 180, 31, 512, 99, 68, 175, 432, 37, 76, 117, 320, 41, 252, 43, 176, 405, 92, 47, 768, 343, 500, 153, 208, 53, 972, 275, 448, 171, 116, 59, 720
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

This sequence has similarities with A087019.
These are the positions of first appearances of each positive integer in A346701, and also in A346703. - Gus Wiseman, Aug 09 2021

Examples

			For n = 42:
- 42 = 2 * 3 * 7, so:
          2 3 7
        x 2 3 7
        -------
          2 3 7
        2 3 3
    + 2 2 2
    -----------
      2 2 3 3 7
- hence a(42) = 2 * 2 * 3 * 3 * 7 = 252.
		

Crossrefs

The sum of prime indices of a(n) is 2*A056239(n) - A061395(n).
The version for even indices is A129597(n) = 2*a(n) for n > 1.
The sorted version is A346635.
These are the positions of first appearances in A346701 and in A346703.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A027193 counts partitions of odd length, ranked by A026424.
A209281 adds up the odd bisection of standard compositions (even: A346633).
A346697 adds up the odd bisection of prime indices (reverse: A346699).

Programs

  • Mathematica
    Table[n^2/FactorInteger[n][[-1,1]],{n,100}] (* Gus Wiseman, Aug 09 2021 *)
  • PARI
    See Links section.

Formula

a(n) = n iff n = 1 or n is a prime number.
a(p^k) = p^(2*k-1) for any k > 0 and any prime number p.
A007947(a(n)) = A007947(n).
A001222(a(n)) = 2*A001222(n) - 1 for any n > 1.
From Gus Wiseman, Aug 09 2021: (Start)
A001221(a(n)) = A001221(n).
If g = A006530(n) is the greatest prime factor of n, then a(n) = n^2/g.
a(n) = A129597(n)/2.
(End)

A180513 Lunar squares n that can be written as n = i*i in more than one way.

Original entry on oeis.org

111111111, 111111112, 111111113, 111111114, 111111115, 111111116, 111111117, 111111118, 111111119, 111111211, 111111222, 111111223, 111111224, 111111225, 111111226, 111111227, 111111228, 111111229, 111111311, 111111322, 111111333, 111111334, 111111335, 111111336, 111111337, 111111338, 111111339, 111111411, 111111422, 111111433, 111111444, 111111445, 111111446, 111111447, 111111448, 111111449, 111111511, 111111522
Offset: 1

Views

Author

Keywords

Examples

			11011*11011 = 11111*11111 = 111111111.
		

Crossrefs

A181319 Numbers n with property that there is a different number m such that the lunar squares n*n and m*m are the same.

Original entry on oeis.org

11011, 11012, 11013, 11014, 11015, 11016, 11017, 11018, 11019, 11021, 11022, 11023, 11024, 11025, 11026, 11027, 11028, 11029, 11031, 11032, 11033, 11034, 11035, 11036, 11037, 11038, 11039, 11041, 11042, 11043, 11044, 11045, 11046, 11047, 11048, 11049, 11051, 11052, 11053, 11054, 11055, 11056, 11057, 11058
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Jan 26 2011

Keywords

Examples

			11011*11011 = 11111*11111 = 111111111, so 11011 and 11111 are members.
		

Crossrefs

A343047 a(n) = A343046(n, n).

Original entry on oeis.org

0, 1, 6, 9, 12, 15, 210, 217, 246, 249, 252, 255, 420, 427, 456, 459, 492, 495, 630, 637, 666, 669, 702, 705, 840, 847, 876, 879, 912, 915, 30030, 30061, 30246, 30279, 30252, 30285, 32550, 32587, 32586, 32589, 32592, 32595, 32760, 32797, 32796, 32799, 32832
Offset: 0

Views

Author

Rémy Sigrist, Apr 05 2021

Keywords

Comments

This sequence has similarities with A087019 and A343043.

Examples

			For n = 2:
- the primorial base representation of 2 is "10", so:
         1 0
       x 1 0
       -----
         0 0
     + 1 0
     -------
       1 0 0
- hence a(2) = 2*3 = 6.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(A002110(k)) = A002110(2*k) for any k >= 0.
a(A143293(k)) = A143293(2*k) for any k >= 0.

A169889 Numbers that are carryless squares in base 10.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 100, 105, 121, 126, 144, 149, 164, 169, 181, 186, 400, 405, 424, 429, 441, 446, 461, 466, 484, 489, 500, 501, 504, 505, 506, 509, 600, 605, 621, 626, 644, 649, 664, 669, 681, 686, 900, 905, 924, 929, 941, 946, 961, 966, 984, 989, 10000, 10005, 10104
Offset: 1

Views

Author

Keywords

Comments

A059729 sorted and duplicates removed.

Crossrefs

See A087019 (lunar squares) for another version.

A343035 a(n) = A343033(n, n).

Original entry on oeis.org

1, 2, 5, 4, 11, 30, 17, 8, 25, 110, 23, 60, 31, 238, 385, 16, 41, 150, 47, 220, 935, 506, 59, 120, 121, 806, 125, 476, 67, 2310, 73, 32, 1495, 1394, 2431, 900, 83, 1786, 2635, 440, 97, 39270, 103, 1012, 1925, 2714, 109, 240, 289, 1210, 3895, 1612, 127, 750
Offset: 1

Views

Author

Rémy Sigrist, Apr 03 2021

Keywords

Comments

This sequence has similarities with A087019.

Examples

			For n = 40:
- 40 = 5 * 2^3, so:
          (11 7 5 3 2)
                1 0 3
              x 1 0 3
              -------
                1 0 3
              0 0 0
          + 1 0 1
          -----------
            1 0 1 0 3,
- hence a(40) = 11 * 5 * 2^3 = 440.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (r=1, pp=factor(n)[, 1]~); for (i=1, #pp, for (j=1, #pp, my (p=prime(primepi(pp[i])+primepi(pp[j])-1), v=valuation(r, p), w=min(valuation(n, pp[i]), valuation(n, pp[j]))); if (w>v, r*=p^(w-v)))); r }

Formula

a(n) = n iff n is a power of 2 (A000079).
a(prime(i)^k) = prime(2*i-1)^k for any i > 0 and k > 0.

A343043 a(n) = A343042(n, n).

Original entry on oeis.org

0, 1, 6, 9, 12, 15, 120, 127, 150, 153, 156, 159, 240, 247, 270, 273, 300, 303, 360, 367, 390, 393, 420, 423, 5040, 5065, 5166, 5193, 5172, 5199, 5880, 5911, 5910, 5913, 5916, 5919, 6000, 6031, 6030, 6033, 6060, 6063, 6120, 6151, 6150, 6153, 6180, 6183, 10080
Offset: 0

Views

Author

Rémy Sigrist, Apr 05 2021

Keywords

Comments

This sequence has similarities with A087019 and A343047.

Examples

			For n = 42:
- the factorial base representation of 42 is "1300", so:
              1 3 0 0
            x 1 3 0 0
            ---------
              0 0 0 0
            0 0 0 0
          1 3 0 0
      + 1 1 0 0
      ---------------
        1 1 3 0 0 0 0
- hence a(42) = 7! + 6! + 3*5! = 6120.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(k!) = (2*k-1)! for any k > 0.
a(A007489(k)) = A007489(2*k-1) for any k > 0.

A087027 a(n) = n*m where * is lunar multiplication and m is the ordinary sum n+1.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 210, 221, 222, 223, 224, 225, 226, 227, 228, 230, 310, 321, 332, 333, 334, 335, 336, 337, 338, 340, 410, 421, 432, 443, 444, 445, 446, 447, 448, 450, 510, 521, 532, 543, 554, 555, 556, 557, 558
Offset: 0

Views

Author

Marc LeBrun and N. J. A. Sloane, Oct 19 2003

Keywords

Crossrefs

Cf. A087019.
Showing 1-10 of 13 results. Next