cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087053 Numbers of the form pq + qr + rp where p, q and r are distinct primes, with multiplicity.

Original entry on oeis.org

31, 41, 61, 59, 71, 91, 71, 87, 101, 101, 121, 113, 103, 129, 151, 131, 161, 143, 119, 191, 171, 131, 167, 211, 151, 221, 185, 151, 241, 167, 191, 213, 227, 271, 221, 199, 301, 191, 311, 269, 243, 167, 211, 341, 275, 297, 269, 361, 215, 311, 293, 247, 371
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 07 2003

Keywords

Comments

Arithmetic derivative of numbers having exactly three primes that are distinct: a(n) = A003415(A007304(n)).

Crossrefs

Programs

  • PARI
    is(n)=forprime(r=(sqrtint(3*n-3)+5)\3, (n-6)\5, forprime(q= sqrtint(r^2+n)-r+1, min((n-2*r)\(r+2), r-2), if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)), return(1)))); 0 \\ Charles R Greathouse IV, Feb 26 2014
    
  • PARI
    list(n)=my(v=List()); forprime(r=5, (n-6)\5, forprime(q=3, min((n-2*r)\(r+2), r-2), my(S=q+r, P=q*r); forprime(p=2, min((n-P)\S, q-1), listput(v, p*S+P))));  Set(v) \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, primefactors
    def A087053(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return (p:=primefactors(bisection(f)))[0]*(p[1]+p[2])+p[1]*p[2] # Chai Wah Wu, Aug 30 2024