cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087062 Array T(n,k) = lunar product n*k (n >= 1, k >= 1) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 10, 2, 3, 4, 5, 5, 4, 3, 2, 10, 11, 10, 3, 4, 5, 6, 5, 4, 3, 10, 11, 11, 11, 10, 4, 5, 6, 6, 5, 4, 10, 11, 11, 11, 12, 11, 10, 5, 6, 7, 6, 5, 10, 11, 12, 11, 11, 12, 12
Offset: 1

Views

Author

Marc LeBrun, Oct 09 2003

Keywords

Comments

See A087061 for definition. Note that 0+x = x and 9*x = x for all x.
This differs from A003983 at a(46): min(1,10)=1, while lunar product 10*1 = 10.
We have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014

Examples

			Lunar multiplication table begins:
1 1 1 1 1 ...
1 2 2 2 2 ...
1 2 3 3 3 ...
1 2 3 4 4 ...
1 2 3 4 5 ...
		

Crossrefs

Cf. A087061 (addition), A003983 (min), A087097 (lunar primes).
See A261684 for a version that includes the zero row and column.

Programs

  • Maple
    # convert decimal to string: rec := proc(n) local t0,t1,e,l; if n <= 0 then RETURN([[0],1]); fi; t0 := n mod 10; t1 := (n-t0)/10; e := [t0]; l := 1; while t1 <> 0 do t0 := t1 mod 10; t1 := (t1-t0)/10; l := l+1; e := [op(e),t0]; od; RETURN([e,l]); end;
    # convert string to decimal: cer := proc(ep) local i,e,l,t1; e := ep[1]; l := ep[2]; t1 := 0; if l <= 0 then RETURN(t1); fi; for i from 1 to l do t1 := t1+10^(i-1)*e[i]; od; RETURN(t1); end;
    # lunar addition: dadd := proc(m,n) local i,r1,r2,e1,e2,l1,l2,l,l3,t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := max(l1,l2); l3 := min(l1,l2); t0 := array(1..l); for i from 1 to l3 do t0[i] := max(e1[i],e2[i]); od; if l>l3 then for i from l3+1 to l do if l1>l2 then t0[i] := e1[i]; else t0[i] := e2[i]; fi; od; fi; cer([t0,l]); end;
    # lunar multiplication: dmul := proc(m,n) local k,i,j,r1,r2,e1,e2,l1,l2,l,t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := l1+l2-1; t0 := array(1..l); for i from 1 to l do t0[i] := 0; od; for i from 1 to l2 do for j from 1 to l1 do k := min(e2[i],e1[j]); t0[i+j-1] := max(t0[i+j-1],k); od; od; cer([t0,l]); end;
  • Mathematica
    ladd[x_, y_] := FromDigits[MapThread[Max, IntegerDigits[#, 10, Max@IntegerLength[{x, y}]] & /@ {x, y}]];
    lmult[x_, y_] := Fold[ladd, 0, Table[10^i, {i, IntegerLength[y] - 1, 0, -1}]*FromDigits /@ Transpose@Partition[Min[##] & @@@ Tuples[IntegerDigits[{x, y}]], IntegerLength[y]]];
    Flatten[Table[lmult[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* Davin Park, Oct 06 2016 *)
  • PARI
    lmul=A087062(m,n,d(n)=Vecrev(digits(n)))={sum(i=1,#(n=d(n))-1+#m=d(m), vecmax(vector(min(i,#n),j,if(#m>i-j,min(n[j],m[i-j+1]))))*10^i)\10} \\ M. F. Hasler, Nov 13 2017
  • Python
    def lunar_add(n,m):
        sn, sm = str(n), str(m)
        l = max(len(sn),len(sm))
        return int(''.join(max(i,j) for i,j in zip(sn.rjust(l,'0'),sm.rjust(l,'0'))))
    def lunar_mul(n,m):
        sn, sm, y = str(n), str(m), 0
        for i in range(len(sm)):
            c = sm[-i-1]
            y = lunar_add(y,int(''.join(min(j,c) for j in sn))*10**i)
        return y # Chai Wah Wu, Sep 06 2015
    

Extensions

Maple programs from N. J. A. Sloane.
Incorrect comment and Mathematica program removed by David Applegate, Jan 03 2012
Edited by M. F. Hasler, Nov 13 2017