A087094 a(n) = smallest k such that (10^k-1)/9 == 0 mod prime(n)^2, or 0 if no such k exists.
0, 9, 0, 42, 22, 78, 272, 342, 506, 812, 465, 111, 205, 903, 2162, 689, 3422, 3660, 2211, 2485, 584, 1027, 3403, 3916, 9312, 404, 3502, 5671, 11772, 12656, 5334, 17030, 1096, 6394, 22052, 11325, 12246, 13203, 27722, 7439, 31862, 32580, 18145, 37056, 19306
Offset: 1
Keywords
Examples
a(2)=9 since 9 is least value of k for which (10^k-1)/9=0 mod 3^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
0,9,0,seq(numtheory:-order(10,ithprime(i)^2), i=4..100); # Robert Israel, Dec 30 2015
-
PARI
a(n)=p=prime(n);10%p==0 && return(0);for(k=1,p^2,((10^k-1)/9) % p^2 == 0 && return(k));error() \\ Jeppe Stig Nielsen, Dec 28 2015
-
PARI
a(n)=p=prime(n);if(10%p==0, 0, 10%p==1, 9, znorder(Mod(10,p^2))) \\ Jeppe Stig Nielsen, Dec 28 2015
Comments