A087099 Partial sums of A063914.
1, 3, 6, 11, 16, 24, 31, 42, 51, 65, 76, 93, 106, 126, 141, 164, 181, 207, 226, 255, 276, 308, 331, 366, 391, 429, 456, 497, 526, 570, 601, 648, 681, 731, 766, 819, 856, 912, 951, 1010, 1051, 1113, 1156, 1221, 1266, 1334, 1381, 1452, 1501, 1575, 1626
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Mathematica
With[{nn=50},Accumulate[Riffle[Range[1,2*nn,2],3*Range[0,nn]+2]]] (* Harvey P. Dale, Jul 25 2013 *)
Formula
From Chai Wah Wu, Feb 02 2021: (Start)
a(n) = 2*a(n-2) - a(n-4) for n > 4.
G.f.: x*(x^3 + x^2 + 2*x + 1)/((x - 1)^2*(x + 1)^2). (End)