cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087115 Convolution of sum of cubes of divisors with itself.

Original entry on oeis.org

0, 1, 18, 137, 650, 2350, 6860, 17609, 39870, 83976, 162382, 301070, 522886, 885284, 1424468, 2254537, 3419448, 5143987, 7448874, 10750712, 15015872, 20948610, 28373444, 38539022, 50863150, 67454492, 87209316, 113326308, 143748766, 183759900, 229271536
Offset: 1

Views

Author

Michael Somos, Aug 13 2003

Keywords

Comments

Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = x^2 + 18*x^3 + 137*x^4 + 650*x^5 + 2350*x^6 + 6860*x^7 + 17609*x^8 + ...
		

References

  • Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chapter VII, Section 4., p. 93.

Crossrefs

Cf. A004009.
Cf. A001158 (sigma_3), A013955 (sigma_7). [Ridouane Oudra, Apr 22 2020]

Programs

  • Maple
    with(numtheory); f:=n->add( sigma[3](k)*sigma[3](n-k),k=1..n-1);
  • Mathematica
    a[ n_] := If[ n < 1, 0, (DivisorSigma[ 7, n] - DivisorSigma[ 3, n]) / 120]; (* Michael Somos, Oct 08 2017 *)
  • PARI
    {a(n) = if( n<1, 0, (sigma(n, 7) - sigma(n, 3)) / 120)};
    
  • PARI
    {a(n) = if( n<1, 0, sum(m=1, n-1, sigma(m, 3) * sigma(n-m, 3)))};

Formula

G.f.: (Sum_{k>0} k^3 * x^k / (1 - x^k))^2.
a(n) = (sigma_7(n) - sigma_3(n)) / 120.
G.f.: ((Q(x) - 1) / 240)^2 where Q() is a Ramanujan Eisenstein series.
Dirichlet g.f.: zeta(s) * (zeta(s-7) - zeta(s-3)) / 120. - Amiram Eldar, Jan 11 2025
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 9072000. - Vaclav Kotesovec, Aug 20 2025