A087115 Convolution of sum of cubes of divisors with itself.
0, 1, 18, 137, 650, 2350, 6860, 17609, 39870, 83976, 162382, 301070, 522886, 885284, 1424468, 2254537, 3419448, 5143987, 7448874, 10750712, 15015872, 20948610, 28373444, 38539022, 50863150, 67454492, 87209316, 113326308, 143748766, 183759900, 229271536
Offset: 1
Examples
G.f. = x^2 + 18*x^3 + 137*x^4 + 650*x^5 + 2350*x^6 + 6860*x^7 + 17609*x^8 + ...
References
- Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chapter VII, Section 4., p. 93.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A004009.
Programs
-
Maple
with(numtheory); f:=n->add( sigma[3](k)*sigma[3](n-k),k=1..n-1);
-
Mathematica
a[ n_] := If[ n < 1, 0, (DivisorSigma[ 7, n] - DivisorSigma[ 3, n]) / 120]; (* Michael Somos, Oct 08 2017 *)
-
PARI
{a(n) = if( n<1, 0, (sigma(n, 7) - sigma(n, 3)) / 120)};
-
PARI
{a(n) = if( n<1, 0, sum(m=1, n-1, sigma(m, 3) * sigma(n-m, 3)))};
Formula
G.f.: (Sum_{k>0} k^3 * x^k / (1 - x^k))^2.
a(n) = (sigma_7(n) - sigma_3(n)) / 120.
G.f.: ((Q(x) - 1) / 240)^2 where Q() is a Ramanujan Eisenstein series.
Dirichlet g.f.: zeta(s) * (zeta(s-7) - zeta(s-3)) / 120. - Amiram Eldar, Jan 11 2025
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 9072000. - Vaclav Kotesovec, Aug 20 2025
Comments