A087122 a(n) is the number of non-congruent solutions to x^2*y^2 == 0 (mod n).
1, 3, 5, 12, 9, 15, 13, 32, 45, 27, 21, 60, 25, 39, 45, 128, 33, 135, 37, 108, 65, 63, 45, 160, 225, 75, 189, 156, 57, 135, 61, 320, 105, 99, 117, 540, 73, 111, 125, 288, 81, 195, 85, 252, 405, 135, 93, 640, 637, 675, 165, 300, 105, 567, 189, 416, 185, 171, 117, 540, 121, 183, 585, 1280, 225, 315, 133, 396, 225, 351
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Product[{p, e} = pe; p^(e+Floor[e/2]-1)((p-1) Ceiling[e/2]+p), {pe, FactorInteger[n]}]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(e + e\2 - 1)*((p-1)*((e+1)\2) + p))} \\ Andrew Howroyd, Jul 15 2018
Formula
Multiplicative with a(p^e) = p^(e + floor(e/2) - 1)*((p-1)*ceiling(e/2) + p). - Andrew Howroyd, Jul 15 2018