A087166 Primes which are palindromes in 3 or more bases.
17, 31, 67, 73, 107, 109, 127, 151, 157, 173, 181, 191, 197, 211, 227, 241, 257, 271, 277, 307, 313, 337, 353, 373, 379, 401, 409, 419, 421, 433, 443, 457, 461, 463, 487, 521, 523, 541, 577, 587, 601, 617, 619, 631, 647, 661, 673, 683, 701, 719, 727, 743, 757, 761, 773, 787, 797, 809, 857, 859
Offset: 1
Examples
31 is in the list, as 31 base 2 = 11111, 31 base 5 = 111 and 31 base 30 = 11, i.e. three different ways.
Links
- Robert Israel, Table of n, a(n) for n = 1..5867
Crossrefs
Primes in A253594.
Programs
-
Maple
N:= 1000: # for all terms <= N digrev:= proc(n,b) local L,i; L:= convert(n,base,b); add(L[-i]*b^(i-1),i=1..nops(L)) end proc: bpalis:= proc(b, N) local Res,dmax,d,m; dmax:= floor(log[b](N))+1; if dmax < 2 then return [] fi; Res:= seq(i*(b+1),i=1..b-1); for d from 3 to dmax do if d::even then m:= d/2; Res:= Res, seq(n*b^m + digrev(n,b),n=b^(m-1)..b^m-1); else m:= (d-1)/2; Res:= Res, seq(seq(n*b^(m+1)+y*b^m+digrev(n,b), y=0..b-1), n=b^(m-1)..b^m-1); fi od; select(`<=`,[Res], N) end proc: V:= Vector(N): for b from 2 to N-1 do bp:= bpalis(b,N); V[bp]:= V[bp] +~ 1 od: select(p -> isprime(p) and V[p] >= 3, [seq(i,i=3..N,2)]); # Robert Israel, May 01 2020
Extensions
Corrected by Robert Israel, May 01 2020
Comments