cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087219 Satisfies A(x) = f(x) + x*A(x)*f(x)^2, where f(x) = Sum_{k>=0} x^((3^n-1)/2) and f(x)^2 = 2 - f(x^2) + 2*Sum_{n>0} x^A023745(n). Also, A(x) = f(x)*B(x), where B(x) = Sum_{k>=0} A087218(k)*x^k.

Original entry on oeis.org

1, 2, 4, 9, 20, 44, 99, 219, 487, 1083, 2406, 5349, 11889, 26426, 58739, 130563, 290208, 645062, 1433814, 3187014, 7083951, 15745878, 34999212, 77794638, 172918335, 384354909, 854326387, 1898957331, 4220914872, 9382055124
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2003

Keywords

Examples

			Given f(x) = 1 + x + x^4 + x^13 + x^40 + x^121 + ... so that f(x)^2 = 1 + 2x + x^2 + 2x^4 + 2x^5 + x^8 + 2*x^13 + ... then A(x) = (1 + x + x^4 + ...) + x*A(x)*(1 + 2x + x^2 + 2x^4 + 2x^5 + ...) = 1 + 2x + 4x^2 + 9x^3 + 20x^4 + 44x^5 + ...
		

Crossrefs

Programs

  • PARI
    a(n)=local(A,m); if(n<1,1,m=1; A=1+O(x); while(m<=2*n+1,m*=3; A=1/(1/subst(A,x,x^3)-x)); polcoeff(A,2*n+1));

Formula

a(n) = A078932(2n+1). a(m) = 1 (mod 3) when m = (3^n-1)/2 (mod 3), else a(m) = 2 (mod 3) when m = A023745(n), otherwise a(m) = 0 (mod 3).