A087229 Exponent of p=2 in 12n+4 = 3(4n+1)+1.
2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 10, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4
Offset: 0
Keywords
Examples
n=85: m = 4*n + 1 = 4*85 + 1 = 341, whose Collatz trajectory begins with 341 -> 1024 followed by a(85)=10 consecutive halving steps.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..21845
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Mathematica
Table[Part[Part[FactorInteger[12*w+4],1],2], {w,0,100}] Table[IntegerExponent[12*n + 4, 2], {n, 0, 100}] (* Amiram Eldar, Feb 03 2022 *)
-
PARI
A087229(n) = valuation((12*n)+4,2); \\ Antti Karttunen, Oct 09 2018
-
Perl
# In 4*n+1 (n>0), find position of first bit that will repeat. sub a { my $nv= ((shift() << 2) | 1); my $bp= 1; while (($nv & 1) xor ($nv & 2)) { $nv>>= 1; $bp++; } return $bp; } # Ruud H.G. van Tol, Sep 27 2021
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - Amiram Eldar, Aug 30 2024
Extensions
Part of the name moved to comments section by Antti Karttunen, Oct 09 2018
a(0) = 2 prepended by Ihar Senkevich, Feb 05 2022
Comments