A087232 a(n) is the largest odd term in the 3x+1 trajectory initiated at n.
1, 1, 5, 1, 5, 5, 17, 1, 17, 5, 17, 5, 13, 17, 53, 1, 17, 17, 29, 5, 21, 17, 53, 5, 29, 13, 3077, 17, 29, 53, 3077, 1, 33, 17, 53, 17, 37, 29, 101, 5, 3077, 21, 65, 17, 45, 53, 3077, 5, 49, 29, 77, 13, 53, 3077, 3077, 17, 65, 29, 101, 53, 61, 3077, 3077, 1, 65, 33, 101, 17, 69
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, max( `if`(n::odd, n, 0), a(`if`(n::even, n/2, 3*n+1)))) end: seq(a(n), n=1..88); # Alois P. Heinz, Nov 14 2021
-
Mathematica
c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] ofp[x_] := Part[fpl[x], Flatten[Position[OddQ[fpl[x]], True]]] Table[Max[ofp[w]], {w, 1, 256}] (* Second program: *) Array[Max@ Select[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, #, Unequal[#, 1, -1, -10, -34] &, 1, 10^4], OddQ] &, 69] (* Michael De Vlieger, May 15 2017, after Alonso del Arte at A025586 *)
Formula
If n = 2^k (for integers k >= 0), a(n) = 1; otherwise a(n) = (A025586(n)-1)/3 =(A056959(n)-1)/3. - Paolo Xausa, Nov 13 2021
Extensions
Name simplified by Paolo Xausa, Nov 13 2021
Comments