cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087232 a(n) is the largest odd term in the 3x+1 trajectory initiated at n.

Original entry on oeis.org

1, 1, 5, 1, 5, 5, 17, 1, 17, 5, 17, 5, 13, 17, 53, 1, 17, 17, 29, 5, 21, 17, 53, 5, 29, 13, 3077, 17, 29, 53, 3077, 1, 33, 17, 53, 17, 37, 29, 101, 5, 3077, 21, 65, 17, 45, 53, 3077, 5, 49, 29, 77, 13, 53, 3077, 3077, 17, 65, 29, 101, 53, 61, 3077, 3077, 1, 65, 33, 101, 17, 69
Offset: 1

Views

Author

Labos Elemer, Sep 18 2003

Keywords

Comments

a(n)=3077 corresponds to peak=9232.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, max(
         `if`(n::odd, n, 0), a(`if`(n::even, n/2, 3*n+1))))
        end:
    seq(a(n), n=1..88);  # Alois P. Heinz, Nov 14 2021
  • Mathematica
    c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] ofp[x_] := Part[fpl[x], Flatten[Position[OddQ[fpl[x]], True]]] Table[Max[ofp[w]], {w, 1, 256}]
    (* Second program: *)
    Array[Max@ Select[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, #, Unequal[#, 1, -1, -10, -34] &, 1, 10^4], OddQ] &, 69] (* Michael De Vlieger, May 15 2017, after Alonso del Arte at A025586 *)

Formula

If n = 2^k (for integers k >= 0), a(n) = 1; otherwise a(n) = (A025586(n)-1)/3 =(A056959(n)-1)/3. - Paolo Xausa, Nov 13 2021

Extensions

Name simplified by Paolo Xausa, Nov 13 2021