cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087248 Squarefree abundant numbers.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 210, 222, 246, 258, 282, 318, 330, 354, 366, 390, 402, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 642, 654, 678, 690, 714, 762, 770, 786, 798, 822, 834, 858, 870, 894, 906, 910, 930, 942, 966, 978
Offset: 1

Views

Author

Labos Elemer, Sep 05 2003

Keywords

Comments

First odd term is 15015 = 3 * 5 * 7 * 11 * 13, with 32 divisors that add up to 32256 = 2*15015 + 2226. See A112643. - Alonso del Arte, Nov 06 2017
The lower asymptotic density of this sequence is larger than 1/(2*Pi^2) = 0.05066... which is the density of its subsequence of squarefree numbers larger than 6 and divisible by 6. The number of terms below 10^k for k=1,2,... is 0, 5, 53, 556, 5505, 55345, 551577, 5521257, 55233676, 552179958, 5521420147, ..., so it seems that this sequence has an asymptotic density which equals to about 0.05521... - Amiram Eldar, Feb 13 2021
The asymptotic density of this sequence is larger than 0.0544 (Wall, 1970). - Amiram Eldar, Apr 18 2024

Examples

			Checking that 30 = 2 * 3 * 5 and sigma(30) = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72, which is more than twice 30, we verify that 30 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA005101 := proc(n)
        simplify(numtheory[sigma](n)>2*n);
    end proc:
    isA087248 := proc(n)
        isA005101(n) and numtheory[issqrfree](n) ;
    end proc:
    for n from 1 to 500 do
        if isA087248(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    Select[Range[10^3], SquareFreeQ@ # && DivisorSigma[1, #] > 2 # &] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    isA087248(i) = (sigma(i) > 2*i) && issquarefree(i) \\ Michel Marcus, Mar 09 2013

Formula

A005117 INTERSECT A005101.

A087244 Nonsquarefree deficient numbers.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 44, 45, 49, 50, 52, 63, 64, 68, 75, 76, 81, 92, 98, 99, 116, 117, 121, 124, 125, 128, 135, 136, 147, 148, 152, 153, 164, 169, 171, 172, 175, 184, 188, 189, 207, 212, 225, 232, 236, 242, 243, 244, 245, 248, 250, 256, 261, 268, 275, 279
Offset: 1

Views

Author

Labos Elemer, Sep 05 2003

Keywords

Comments

The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 3, 21, 197, 1982, 19913, 199871, 1995546, 19967891, 199695593, 1996670090, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1996... . - Amiram Eldar, Dec 29 2024

Examples

			m = 45 - 3*3*5 and sigma(45) = 78 < 2m = 90.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 280, And[! SquareFreeQ@ #, DivisorSigma[1, #] < 2 #] &] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    isok(n) = !issquarefree(n) && (sigma(n) < 2*n); \\ Michel Marcus, Dec 18 2013
    
  • Python
    from sympy import divisor_sigma
    from sympy.ntheory.factor_ import core
    print([n for n in range(1,301) if core(n) != n and divisor_sigma(n)<2*n]) # Indranil Ghosh, Mar 26 2017

A087247 Squarefree deficient nonprime numbers.

Original entry on oeis.org

1, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 105, 106, 110, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161, 165, 166, 170, 177, 178, 182, 183
Offset: 1

Views

Author

Labos Elemer, Sep 05 2003

Keywords

Examples

			105 = 3*5*7 and sigma(105) = 1 + 3 + 5 + 7 + 15 + 21 + 35 + 105 = 192 < 210 = 2*105, so 105 is in the sequence.
The sequence differs from A006881: first term with 3 distinct prime factors is 105.
		

Crossrefs

Programs

  • Mathematica
    isA087247[n_] := SquareFreeQ[n] && !PrimeQ[n] && (DivisorSigma[1, n] < 2n); Select[Range[200], isA087247] (* Enrique Pérez Herrero, Jan 13 2011 *)
  • PARI
    isok(n) = !isprime(n) && issquarefree(n) && (sigma(n) < 2*n); \\ Michel Marcus, Jul 09 2018
Showing 1-3 of 3 results.