A087248 Squarefree abundant numbers.
30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 210, 222, 246, 258, 282, 318, 330, 354, 366, 390, 402, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 642, 654, 678, 690, 714, 762, 770, 786, 798, 822, 834, 858, 870, 894, 906, 910, 930, 942, 966, 978
Offset: 1
Keywords
Examples
Checking that 30 = 2 * 3 * 5 and sigma(30) = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72, which is more than twice 30, we verify that 30 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Charles Robert Wall, Topics related to the sum of unitary divisors of an integer, Ph.D. diss., University of Tennessee, 1970.
Programs
-
Maple
isA005101 := proc(n) simplify(numtheory[sigma](n)>2*n); end proc: isA087248 := proc(n) isA005101(n) and numtheory[issqrfree](n) ; end proc: for n from 1 to 500 do if isA087248(n) then print(n); end if; end do: # R. J. Mathar, Nov 10 2014
-
Mathematica
Select[Range[10^3], SquareFreeQ@ # && DivisorSigma[1, #] > 2 # &] (* Michael De Vlieger, Feb 05 2017 *)
-
PARI
isA087248(i) = (sigma(i) > 2*i) && issquarefree(i) \\ Michel Marcus, Mar 09 2013
Comments