cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A087432 Expansion of 1+x*(1-x-4*x^2)/((1+x)*(1-2*x)*(1-3*x)).

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 143, 407, 1179, 3451, 10183, 30207, 89939, 268451, 802623, 2402407, 7196299, 21567051, 64657463, 193885007, 581480259, 1744091251, 5231574703, 15693326007, 47077181819, 141225953051, 423666674343
Offset: 0

Views

Author

Paul Barry, Sep 02 2003

Keywords

Comments

Binomial transform of A047849 (with interpolated zeros, 1,0,2,0,6,0,...). Binomial transform is A087433.

Crossrefs

First differences of A093379.

Programs

  • Mathematica
    CoefficientList[Series[1+x (1-x-4x^2)/((1+x)(1-2x)(1-3x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,-1,-6},{1,1,3,7},30] (* Harvey P. Dale, Aug 23 2017 *)
  • PARI
    Vec((x-1)*(2*x^2+2*x-1)/((1+x)*(1-2*x)*(1-3*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012, corrected Nov 27 2014

Formula

a(n) = (-1)^n/6+2^n/3+3^n/6, n>0.
For n>4, a(n) = 6*a(n-1) - 9*a(n-2) - 4*a(n-3) + 12*a(n-4). - Gary W. Adamson, Jun 14 2006

A094659 Number of closed walks of length n at a vertex of the cyclic graph on 7 nodes C_7.

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 2, 70, 18, 252, 110, 924, 572, 3434, 2730, 12902, 12376, 48926, 54264, 187036, 232562, 720062, 980674, 2789164, 4086550, 10861060, 16878420, 42484682, 69242082, 166823430, 282580872, 657178982, 1148548016, 2595874468
Offset: 0

Views

Author

Herbert Kociemba, Jun 06 2004

Keywords

Comments

In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.

Crossrefs

Cf. A199572 (m=2), A078008 (m=3), A199573 (m=4), A054877 (m=5), A047849 (bisection of m=6), A063376 (bisection of m=8), A094233 (m=9), A095929 (bisection of m=10), A087433 (bisection of m=12).

Programs

  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[ 2^n/7 Sum[Cos[2Pi*k/7]^n, {k, 0, 6}]]]; Table[ f[n], {n, 0, 36}] (* Robert G. Wilson v, Jun 09 2004 *)
    LinearRecurrence[{1,4,-3,-2},{1,0,2,0},40] (* Harvey P. Dale, Jun 12 2014 *)

Formula

a(n) = (2^n/7)*Sum_{k=0..6} cos(2*Pi*k/7)^n.
a(n) = 7(a(n-2) - 2a(n-4) + a(n-6)) + 2a(n-7).
G.f.: (1-x-2x^2+x^3)/((2x-1)(-1-x+2x^2+x^3)).
a(0)=1, a(1)=0, a(2)=2, a(3)=0, a(n)=a(n-1)+4*a(n-2)-3*a(n-3)-2*a(n-4). - Harvey P. Dale, Jun 12 2014
7*a(n) = 2^n + 2*A094648(n). - R. J. Mathar, Nov 03 2020

Extensions

More terms from Robert G. Wilson v, Jun 09 2004
Showing 1-2 of 2 results.