cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087472 Number of iterations required for the function f(n) to reach a single digit, where f(n) is the product of the two numbers formed from the alternating digits of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 11 2003

Keywords

Comments

A087471(n) gives the final digit reached by successive iterations of Murthy's function, f(n). A087473(n) gives the smallest number that requires n iterations of Murthy's function to reach a single digit. The n-th row of triangle A087474 gives the n successive iterations of Murthy's function on A087473(n).
Differs from A031346 first at n=110. [From R. J. Mathar, Sep 11 2008]

Examples

			a(1234)= 3 since f(1234)=13*24=312, f(312)=32*1=32 and
f(32)=3*2=6.
		

Crossrefs

Programs

  • Maple
    murthy:= proc(n) local L,d;
      L:= convert(n,base,10);
      d:= nops(L);
      add(L[2*i+1]*10^i,i=0..(d-1)/2)*add(L[2*i+2]*10^i,i=0..(d-2)/2)
    end proc:
    A087472:= proc(n) option remember;
      if n < 10 then  0 else 1+procname(murthy(n)) fi
    end proc:
    map(A087472, [$1..200]); # Robert Israel, Feb 14 2017