A087488 Number of n X n (-1,1)-matrices with all eigenvalues >= 0.
1, 1, 6, 64, 4744, 536736
Offset: 0
Examples
For n = 2 the six matrices are (+ means +1, - means -1): ++ +- -- -+ +- ++ -- +- ++ -+ -+ ++ with eigenvalues 00 00 00 00 20 20 respectively.
Links
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], 2003.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
- Index entries for sequences related to binary matrices
Programs
-
Mathematica
a[n_] := Select[Partition[#, n] & /@ Tuples[{-1, 1}, {n^2}], AllTrue[ Eigenvalues[#], NonNegative]&] // Length; a[0] = 1; Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Feb 13 2019 *)
Extensions
a(5) from Jean-François Alcover, Feb 13 2019