cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087493 Decimal expansion of Khinchin mean K_{-3}.

Original entry on oeis.org

1, 3, 1, 3, 5, 0, 7, 0, 7, 8, 6, 8, 7, 9, 8, 5, 7, 6, 6, 7, 1, 7, 3, 3, 9, 4, 4, 7, 0, 7, 2, 7, 8, 6, 8, 2, 8, 1, 5, 8, 1, 2, 9, 8, 6, 1, 4, 8, 4, 7, 9, 2, 0, 5, 8, 8, 0, 9, 8, 4, 9, 8, 0, 5, 4, 2, 3, 8, 8, 1, 3, 6, 0, 3, 3, 8, 8, 1, 5, 9, 2, 5, 0, 5, 2, 4, 2, 9, 1, 5, 4, 1, 1, 8, 2, 2, 0, 8, 6, 1, 1, 7, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2003

Keywords

Comments

Khinchin's constant is K_0.

Examples

			1.3135070786879857667173394470727868281581298614...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 61.

Crossrefs

Programs

  • Mathematica
    digits = 102; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^3*Log[2])); s[n_] = Series[f[n] , {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n] , {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n] , {n, exactEnd + 1, Infinity}] // N[#, digits]&; A087493 = (exactSum + extraSum)^(-1/3) // RealDigits // First (* Jean-François Alcover, Feb 06 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 06 2013