A087502 Smallest positive integer which when written in base n is doubled when the last digit is put first.
32, 18, 8, 10993850, 2129428800, 21, 5064320, 105263157894736842, 40, 64609423538, 5712, 65, 58774271029236501660840264682112, 67650, 96, 833, 586081355679130611935159482937228562988190880, 133
Offset: 3
Examples
a(10) = 105263157894736842 because 2*105263157894736842 = 210526315789473684 and no smaller number has this property. (Leading zeros are not allowed, otherwise 2*052631578947368421 = 105263157894736842 would be a smaller solution.)
Links
- Pontus von Brömssen, Table of n, a(n) for n = 3..221
Programs
-
Maple
A087502 := proc(n) local d,a; d := 1; a := n; while a>=n do d := d+1; a := denom((2^d-1)/(2*n-1)); od; return(max(2,a)*(n^d-1)/(2*n-1)); end proc;
Comments