cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087610 Number of (-1,0,1) polynomials of degree-n irreducible over the integers.

Original entry on oeis.org

3, 5, 12, 34, 104, 292, 916, 2791, 8660, 26538, 81584, 248554
Offset: 1

Views

Author

T. D. Noe, Sep 11 2003

Keywords

Comments

A (-1,0,1) polynomial is defined as a monic polynomial whose remaining coefficients are either -1, 0, or 1. For each n, there are 3^n polynomials to consider.

Examples

			a(2) = 5 because 1+x+x^2, 1+x^2, 1-x+x^2, -1+x+x^2, -1-x+x^2 are irreducible over the integers.
		

Crossrefs

Cf. A087481 (irreducible polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1), A087482 (irreducible binary polynomials).

Programs

  • Maple
    F:= proc(n) local T, count, t,x,p;
          if n::odd then
            T:= combinat:-cartprod([[-1,0,1]$(n-1),[1]])
          else
            T:= combinat:-cartprod([[-1,0,1]$(n-1),[-1,1]])
          fi;
          count:= 0;
          while not T[finished] do
             t:= T[nextvalue]();
             p:= x^n + add(t[i]*x^(n-i),i=1..n);
             if irreduc(p) then count:= count+1 fi;
          od;
          if n::odd then 2*count else count fi;
    end proc:
    3, seq(F(n),n=2..11); # Robert Israel, Dec 10 2015
  • Mathematica
    Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 3, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 3^n-1}]; cnt, {n, 10}]

Extensions

a(11) and a(12) from Robert Israel, Dec 10 2015