A087623 Square array A(n,k) = the cardinality of the set {x in [1,k-1] : gcd(x,k)=n}, read by rising antidiagonals.
0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 6
Offset: 1
Examples
The top left corner of the array: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ---+------------------------------------------------------------------------ 1 | 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 2 | 0, 0, 0, 1, 0, 2, 0, 2, 0, 4, 0, 2, 0, 6, 0, 4, 0, 6, 3 | 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 2, 4 | 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 6 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 7 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 8 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, etc. A(1,4) = 2 and A(2,4) = 1 because gcd(1,4)=1, gcd(2,4)=2, gcd(3,4)=1. A(1,12) = 4, A(2,12) = A(3,12) = A(4,12) = 2, and A(6,12) = 1 because gcd(1,12) = gcd(5,12) = gcd(7,12) = gcd(9,12) = 1, gcd(2,12) = gcd(10,12) = 2, gcd(3,12) = gcd(9,12) = 3, gcd(4,12) = gcd(8,12) = 4 and gcd(6,12) = 6.
Links
Programs
-
PARI
up_to = 105; A087623sq(n, k) = sum(x=1,k-1,gcd(x,k)==n); A087623list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A087623sq((a-(col-1)), col))); (v); }; v087623 = A087623list(up_to); A087623(n) = v087623[n]; \\ Antti Karttunen, Jan 17 2025
Extensions
Definition rephrased in terms of square array instead of triangular table, and data section extended up to 105 terms by Antti Karttunen, Jan 17 2025
Comments