cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087634 Primes p such that the equation phi(x) = 4p has a solution, where phi is the totient function.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 37, 41, 43, 53, 67, 73, 79, 83, 89, 97, 113, 127, 131, 139, 163, 173, 179, 191, 193, 199, 233, 239, 251, 277, 281, 293, 307, 359, 373, 409, 419, 431, 433, 443, 487, 491, 499, 509, 577, 593, 619, 641, 653, 659, 673, 683, 709, 719, 727
Offset: 1

Views

Author

T. D. Noe, Oct 24 2003

Keywords

Comments

Except for p=2, the complement of A043297. Note that for primes p < 1000, we need to check for solutions x < 18478. The equation phi(x) = 2p has solutions for Sophie Germain primes, A005384
a(n) is also the primes p with 2p+1 or 4p+1 also prime, sequences A005384 and A023212. For the case 2p+1 a trivial solution is phi(6p+3)=4p, and for 4p+1, phi(4p+1)=4p. - Enrique Pérez Herrero, Aug 16 2011

Crossrefs

Programs

  • Mathematica
    t=Table[EulerPhi[n], {n, 3, 20000}]; Union[Select[t, Mod[ #, 4]==0&&PrimeQ[ #/4]&& #/4<1000&]/4] (* or *)
    Select[Prime[Range[100]],PrimeQ[4#+1]||PrimeQ[2#+1]&] (* Enrique Pérez Herrero, Aug 16 2011 *)