A087634 Primes p such that the equation phi(x) = 4p has a solution, where phi is the totient function.
2, 3, 5, 7, 11, 13, 23, 29, 37, 41, 43, 53, 67, 73, 79, 83, 89, 97, 113, 127, 131, 139, 163, 173, 179, 191, 193, 199, 233, 239, 251, 277, 281, 293, 307, 359, 373, 409, 419, 431, 433, 443, 487, 491, 499, 509, 577, 593, 619, 641, 653, 659, 673, 683, 709, 719, 727
Offset: 1
Keywords
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Totient Function
Programs
-
Mathematica
t=Table[EulerPhi[n], {n, 3, 20000}]; Union[Select[t, Mod[ #, 4]==0&&PrimeQ[ #/4]&& #/4<1000&]/4] (* or *) Select[Prime[Range[100]],PrimeQ[4#+1]||PrimeQ[2#+1]&] (* Enrique Pérez Herrero, Aug 16 2011 *)
Comments