cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087698 Triangle read by rows, giving T(n,k) = maximum number of examples (Boolean inputs) at Hamming distance 2 for symmetric Boolean functions that can have different outputs.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 7, 8, 7, 4, 1, 1, 5, 11, 15, 15, 11, 5, 1, 1, 6, 16, 26, 30, 26, 16, 6, 1, 1, 7, 22, 42, 56, 56, 42, 22, 7, 1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, 1, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 1, 10, 46, 130, 255, 372, 420
Offset: 0

Views

Author

Leonardo Franco (Leonardo.Franco(AT)psy.ox.ac.uk), Sep 24 2003

Keywords

Comments

This sets an upper bound on the second order term of the complexity measure introduced by Franco, 2001 for symmetric Boolean functions. The sum of the terms for a given N is equal to 2^(N-1).

Examples

			Triangle begins:
1 N=0
1 1 N=1
1 0 1 N=2
1 1 1 1 N=3
1 2 2 2 1 N=4
		

Crossrefs

Formula

T(n, N) = ((N-n)^2 + n^2 - N) * C(N, n) / (N^2 - N) n is the term for the series containing N+1 terms
From Peter Bala, Mar 20 2018: (Start)
Except for (n,k) = (1,0) the formula T(n,k) = C(n,k) - 2*C(n-1,n-k-1) + 2*C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0, appears to give the correct table entries.
Appears to equal A159853, the Riordan array ((1-2*x+2*x^2)/(1-x), x/(1-x)), except for the entry T(1,0). If this is correct then provided n =! 1 we have exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + x + x^2/2! + x^3/3!) = 1 + 2*x + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 15*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). (End)