cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087751 Weighted sum of the harmonic numbers.

Original entry on oeis.org

0, 1, 7, 56, 538, 6124, 81048, 1226112, 20902992, 396857376, 8308373760, 190212376320, 4728556327680, 126865966625280, 3654264347274240, 112484501485977600, 3685202487258163200, 128039255560187596800
Offset: 0

Views

Author

Nicholas C. Singer (nsinger2(AT)cox.net), Oct 02 2003

Keywords

Crossrefs

Programs

  • PARI
    H(n)=sum(j=1,n,1/j); a(n)=n!*sum(j=1,n,binomial(n,j)*H(j))

Formula

a(n) = 2*n*a(n-1) + (n-1)!*(2^n-1); a(0)=0, a(1)=1. a(n)=n! * sum(j=1, n, binomial(n, j)*H(j)), where H(j)=sum(k=1, j, 1/k).
E.g.f.: log((2*x-1)/(x-1))/(2*x-1). a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*2^(n-k)*binomial(n, k)/k. a(n) = n!*Sum_{k=1..n} 2^(n-k)*(2^k-1)/k. - Vladeta Jovovic, Aug 12 2005
a(n) ~ n! * log(n) * 2^n * (1 + (gamma-log(2))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 03 2022