A087784 Number of solutions to x^2 + y^2 + z^2 = 1 mod n.
1, 4, 6, 24, 30, 24, 42, 96, 54, 120, 110, 144, 182, 168, 180, 384, 306, 216, 342, 720, 252, 440, 506, 576, 750, 728, 486, 1008, 870, 720, 930, 1536, 660, 1224, 1260, 1296, 1406, 1368, 1092, 2880, 1722, 1008, 1806, 2640, 1620, 2024, 2162, 2304, 2058, 3000
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, Journal of Integer Sequences, 17 (2014), Article 14.11.6.
Programs
-
Mathematica
Table[With[{f = FactorInteger[n][[All, 1]]}, Apply[Times, Map[1 + 1/# &, Select[f, Mod[#, 4] == 1 &]]] Apply[Times, Map[1 - 1/# &, Select[f, Mod[#, 4] == 3 &]]] (1 + Boole[Divisible[n, 4]]/2) n^2] - Boole[n == 1], {n, 50}] (* Michael De Vlieger, Feb 15 2018 *)
-
PARI
a(n) = {my(f=factor(n)); if ((n % 4), 1, 3/2)*n^2*prod(k=1, #f~, p = f[k,1]; m = p % 4; if (m==1, 1+1/p, if (m==3, 1-1/p, 1)));} \\ Michel Marcus, Feb 14 2018
Formula
a(n) = n^2 * (3/2 if 4|n) * Product_{primes p == 1 mod 4 dividing n} (1+1/p) * Product_{primes p == 3 mod 4 dividing n} (1-1/p). - Bjorn Poonen, Dec 09 2003
Sum_{k=1..n} a(k) ~ c * n^3 + O(n^2 * log(n)), where c = 36*G/Pi^4 = 0.338518..., where G is Catalan's constant (A006752) (Tóth, 2014). - Amiram Eldar, Oct 18 2022
Extensions
More terms from David Wasserman, Jun 17 2005