A087923 Number of ways of arranging the numbers 1 ... 2n into a 2 X n array so there is exactly one local maximum.
2, 16, 208, 3584, 76544, 1947648, 57477120, 1929117696, 72545402880, 3020819005440, 137959904378880, 6855868809216000, 368270708268072960, 21262037565623500800, 1312956239068318924800, 86347473137975269785600, 6025205587810776514560000, 444600907757468888806195200
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Sela Fried and Toufik Mansour, Graph labelings obtainable by random walks, arXiv:2304.05728 [math.CO], 2023.
Programs
-
Maple
a := n -> 2*((2*n - 2)! / doublefactorial(2*n - 1)) * add((2*k*(n - k + 1) - 1) * binomial(2*n, 2*k) / binomial(n, k), k = 1..n): seq(a(n), n = 1..18); # Peter Luschny, Apr 17 2023
-
PARI
a(n)={2*sum(k=1, n, (2*n-2)!*(2*k*(n-k+1)-1)*2^n*k!*(n-k)!/((2*k)!*(2*n-2*k)!))} \\ Andrew Howroyd, Feb 26 2020
Formula
a(n) = 2*Sum_{k=1..n} (2*n-2)!*(2*k*(n-k+1)-1)/((2*k-1)!!*(2*n-2*k-1)!!). - Maximilian Göbel, Feb 26 2020
From Sela Fried, Apr 13 2023: (Start)
a(n) = 2^(n - 1)*(n - 1)!*Sum_{k=0..n-1} (n*binomial(2*(n - 1), 2*k) + binomial(2*n - 1, 2*k))/binomial(n - 1,k).
E.g.f.: ((1 - 2*x)^2*arctan(2*x/sqrt(1 - 4*x)) + 2*x*sqrt(1 - 4*x))/(2*(sqrt(1 - 4*x))^3).
(End)
a(n) ~ Pi * 2^(2*n - 5/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Apr 13 2023
Extensions
Terms a(16) and beyond from Andrew Howroyd, Feb 26 2020
Comments