cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087923 Number of ways of arranging the numbers 1 ... 2n into a 2 X n array so there is exactly one local maximum.

Original entry on oeis.org

2, 16, 208, 3584, 76544, 1947648, 57477120, 1929117696, 72545402880, 3020819005440, 137959904378880, 6855868809216000, 368270708268072960, 21262037565623500800, 1312956239068318924800, 86347473137975269785600, 6025205587810776514560000, 444600907757468888806195200
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Comments

Also the number of random walk labelings of the grid graph P_2 X P_n. - Sela Fried, Apr 14 2023

Crossrefs

Row 2 of A087783.
Cf. A007846.

Programs

  • Maple
    a := n -> 2*((2*n - 2)! / doublefactorial(2*n - 1)) * add((2*k*(n - k + 1) - 1) * binomial(2*n, 2*k) / binomial(n, k), k = 1..n):
    seq(a(n), n = 1..18); # Peter Luschny, Apr 17 2023
  • PARI
    a(n)={2*sum(k=1, n, (2*n-2)!*(2*k*(n-k+1)-1)*2^n*k!*(n-k)!/((2*k)!*(2*n-2*k)!))} \\ Andrew Howroyd, Feb 26 2020

Formula

a(n) = 2*Sum_{k=1..n} (2*n-2)!*(2*k*(n-k+1)-1)/((2*k-1)!!*(2*n-2*k-1)!!). - Maximilian Göbel, Feb 26 2020
From Sela Fried, Apr 13 2023: (Start)
a(n) = 2^(n - 1)*(n - 1)!*Sum_{k=0..n-1} (n*binomial(2*(n - 1), 2*k) + binomial(2*n - 1, 2*k))/binomial(n - 1,k).
E.g.f.: ((1 - 2*x)^2*arctan(2*x/sqrt(1 - 4*x)) + 2*x*sqrt(1 - 4*x))/(2*(sqrt(1 - 4*x))^3).
(End)
a(n) ~ Pi * 2^(2*n - 5/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Apr 13 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Feb 26 2020