A087964 a(n) is the least prime p such that exponent of highest power of 2 dividing 3p+1 equals n.
3, 17, 13, 5, 53, 149, 1237, 1109, 853, 2389, 3413, 17749, 128341, 70997, 251221, 415061, 218453, 2708821, 27088213, 29709653, 3495253, 85284181, 13981013, 39146837, 794121557, 1498764629, 492131669, 626349397, 13779686741
Offset: 1
Keywords
Examples
p = 218453 is the first prime so that 3*p+1 = 655360 = (2^18)*5 has 18 as exponent of 2 in 3p+1, thus a(18) = 218453.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local m,t,p; t:= 2^n; for m from 1 + 4*(n mod 2) by 6 do p:= (t*m-1)/3; if isprime(p) then return p fi od end proc: map(f, [$1..100]); # Robert Israel, Nov 18 2017
-
Mathematica
a[n_] := Module[{m, t = 2^n, p}, For[m = 1 + 4 Mod[n, 2], True, m += 6, p = (t m - 1)/3; If[PrimeQ[p], Return[p]]]]; Array[a, 100] (* Jean-François Alcover, Aug 28 2020, after Robert Israel *)
Extensions
More terms from Ray Chandler, Sep 21 2003