A087991 Number of non-palindromic divisors of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 0, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 0, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 0, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 0, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 0, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 0, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 0, 5, 0, 4, 1, 4, 4
Offset: 1
Examples
For n = 132: divisors = {1,2,3,4,6,11,12,22,33,44,66,132}, revdivisors = {1,2,3,4,6,11,21,22,33,44,66,231}, two of the 12 divisors of n are non-palindromic: {21,132}, so a(132) = 2.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
palQ[n_] := Reverse[x = IntegerDigits[n]] == x; Table[Count[Divisors[n], ?(! palQ[#] &)], {n, 105}] (* _Jayanta Basu, Aug 10 2013 *)
-
Python
def ispal(n): w=str(n) return w==w[::-1] def A087991(n): s = 0 for i in range(1, n+1): if n%i==0 and not ispal(i): s+=1 return s print([A087991(n) for n in range(1,60)]) # Indranil Ghosh, Feb 10 2017
Formula
Sum_{k=1..n} a(k) ~ n * (log(n) + c), where c = 2*A001620 - 1 - A118031 = -3.2158519... . - Amiram Eldar, Apr 17 2025