cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A062687 Numbers all of whose divisors are palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 121, 131, 151, 181, 191, 202, 242, 262, 303, 313, 353, 363, 373, 383, 393, 404, 484, 505, 606, 626, 707, 727, 757, 787, 797, 808, 909, 919, 929, 939, 1111, 1331, 1441, 1661, 1991, 2222, 2662
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			The divisors of 44 are 1, 2, 4, 11, 22 and 44, which are all palindromes, so 44 is in the sequence.
808 has divisors are 1, 2, 4, 8, 101, 202, 404, 808, so 808 is in the sequence.
818 is palindromic, but since it's 2 * 409, it's not in the sequence.
		

Crossrefs

Cf. A087991, A084325, A002385 (subset).
Subsequence of A002113.

Programs

  • Maple
    isA062687 := proc(n)
        for d in numtheory[divisors](n) do
            if not isA002113(d) then
                return false;
            end if;
        end do;
        true ;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_] := Module[{idn = IntegerDigits[n]}, idn == Reverse[idn]]; Select[Range[2750], And@@palQ/@Divisors[#] &] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    isok(n) = {d = divisors(n); rd = vector(#d, i, subst(Polrev(digits(d[i])), x, 10)); (d == rd);} \\ Michel Marcus, Oct 10 2014

A087990 Number of palindromic divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 2, 4, 1, 4, 4
Offset: 1

Views

Author

Labos Elemer, Oct 08 2003

Keywords

Examples

			n=132: divisors={1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132}, revdivisors={1, 2, 3, 4, 6, 11, 21, 22, 33, 44, 66, 231}, a[132]=10; so 10 of 12 divisors of n are palindromic: {1, 2, 3, 4, 6, 11, 22, 33, 44, 66}.
		

Crossrefs

Programs

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A118031 = 3.370283... . - Amiram Eldar, Jan 01 2024

A356018 a(n) is the number of evil divisors (A001969) of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 0, 2, 2, 0, 3, 0, 0, 3, 0, 1, 4, 0, 3, 1, 0, 1, 4, 1, 0, 3, 0, 1, 6, 0, 0, 2, 2, 1, 6, 0, 0, 2, 4, 0, 2, 1, 0, 5, 2, 0, 5, 0, 2, 3, 0, 1, 6, 1, 0, 2, 2, 0, 9, 0, 0, 3, 0, 2, 4, 0, 3, 2, 2, 1, 8, 0, 0, 4, 0, 1, 4, 0, 5, 3, 0, 1, 3, 3, 2
Offset: 1

Views

Author

Bernard Schott, Jul 23 2022

Keywords

Comments

a(n) = 0 iff n is in A093696.

Examples

			12 has 6 divisors: {1, 2, 3, 4, 6, 12} of which three {3, 6, 12} have an even number of 1's in their binary expansion with 11, 110 and 11100 respectively; hence a(12) = 3.
		

Crossrefs

Cf. A000005, A001969, A093688, A093696 (location of 0s), A227872, A356019, A356020.
Similar sequences: A083230, A087990, A087991, A332268, A355302.

Programs

  • Maple
    A356018 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isA001969(d) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A356018(n),n=1..200) ;  # R. J. Mathar, Aug 07 2022
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, EvenQ[DigitCount[#, 2, 1]] &]; Array[a, 100] (* Amiram Eldar, Jul 23 2022 *)
  • PARI
    a(n) = my(v = valuation(n, 2)); n>>=v; d=divisors(n); sum(i=1, #d, bitand(hammingweight(d[i]), 1) == 0) * (v+1) \\ David A. Corneth, Jul 23 2022
  • Python
    from sympy import divisors
    def c(n): return bin(n).count("1")&1 == 0
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 23 2022
    

Formula

a(n) = A000005(n) - A227872(n).

Extensions

More terms from David A. Corneth, Jul 23 2022

A093037 Number of non-palindromic divisors of n sets a new record.

Original entry on oeis.org

1, 10, 20, 30, 48, 60, 120, 180, 240, 360, 420, 720, 840, 1260, 1440, 1680, 2520, 3360, 5040, 7560, 10080, 15120, 20160, 25200, 30240, 43680, 45360, 50400, 55440, 60480, 65520, 90720, 98280, 110880, 131040, 166320, 196560, 262080, 327600
Offset: 1

Views

Author

Jason Earls, May 08 2004

Keywords

Crossrefs

Cf. A087991.

A334391 Numbers whose only palindromic divisor is 1.

Original entry on oeis.org

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 169, 173, 179, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 299, 307
Offset: 1

Views

Author

Bernard Schott, Apr 26 2020

Keywords

Comments

Equivalent: Numbers such that the LCM of their palindromic divisors (A087999) is 1, or,
Numbers such that the number of palindromic divisors (A087990) is 1.
All terms are odd.
The 1st family consists of non-palindromic primes that form the subsequence A334321.
The 2nd family consists of {p^k, p prime, k >= 2} such that p^j for 1 <= j <= k is not a palindrome {169 = 13^2, 289 = 17^2, 361 = 19^2, ..., 2197 = 13^3, ...} (see examples).
The 3rd family consists of products p_1^q_1 * ... * p_k^q_k with k >= 2, all of whose divisors are nonpalindromic {221 = 13 * 27, 247 = 13 * 19, 299 = 13 * 23, 377 = 13 * 29, 391 = 17 * 23, 403 = 13 * 31, 481 = 13 * 37, ...}.
Also, equivalent: numbers all of whose divisors > 1 are nonpalindromic (A029742). - Bernard Schott, Jul 14 2022

Examples

			49 = 7^2, the divisor 7 is a palindrome so 49 is not a term.
169 = 13^2, divisors of 169 are {1, 13, 169} and 169 is a term.
391 = 17*23, divisors of 391 are {1,17,23,391} and 391 is a term.
307^2 = 94249 that is palindrome, so 94249 is not a term.
		

Crossrefs

A334321 is a subsequence.

Programs

  • Maple
    notpali:= proc(n) local L;
      L:= convert(n,base,10);
      L <> ListTools:-Reverse(L)
    end proc:
    filter:= proc(n) option remember; andmap(notpali,numtheory:-divisors(n) minus {1}) end proc:
    select(filter, [seq(i,i=1..400,2)]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[300], !AnyTrue[Rest @ Divisors[#], PalindromeQ] &] (* Amiram Eldar, Apr 26 2020 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = fordiv(n, d, if (d>1 && ispal(d), return(0))); return(1); \\ Michel Marcus, Apr 26 2020
    
  • Python
    from sympy.ntheory import divisors, is_palindromic
    def ok(n): return not any(is_palindromic(d) for d in divisors(n)[1:])
    print(list(filter(ok, range(1, 308, 2)))) # Michael S. Branicky, May 08 2021

Formula

A087990(a(n)) = 1.
A087999(a(n)) = 1.

A335037 a(n) is the number of divisors of n that are themselves divisible by the product of their digits.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 1, 3, 4, 4, 1, 5, 1, 4, 3, 3, 1, 8, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 8, 1, 2, 2, 5, 1, 5, 1, 4, 5, 2, 1, 8, 2, 3, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 2, 5, 1, 3, 2, 4, 1, 10, 1, 2, 4, 3, 3, 4, 1, 5, 3, 2, 1, 7, 2, 2, 2, 5
Offset: 1

Views

Author

Bernard Schott, Jun 03 2020

Keywords

Comments

Inspired by A332268.
A number that is divisible by the product of its digits is called Zuckerman number (A007602); e.g., 24 is a Zuckerman number because it is divisible by 2*4=8 (see links).
a(n) = 1 iff n = 1 or n is prime not repunit >= 13.
a(n) = 2 iff n is prime = 2, 3, 5, 7 or a prime repunit.
Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 111111111111111111111 (repunit with 19 times 1's) have all divisors Zuckerman numbers. The sequence of numbers with all Zuckerman divisors is infinite iff there are infinitely many repunit primes (see A004023).

Examples

			For n = 4, the divisors are 1, 2, 4 and they are all Zuckerman numbers, so a(4) = 3.
For n = 14, the divisors are 1, 2, 7 and 14. Only 1, 2 and 7 are Zuckerman numbers, so a(14) = 3.
		

Crossrefs

Similar with: A001227 (odd divisors), A087990 (palindromic divisors), A087991 (non-palindromic divisors), A242627 (divisors < 10), A332268 (Niven divisors).

Programs

  • Mathematica
    zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0&& Divisible[n, prodig]; a[n_] := Count[Divisors[n], ?(zuckQ[#] &)]; Array[a, 100] (* _Amiram Eldar, Jun 03 2020 *)
  • PARI
    iszu(n) = my(p=vecprod(digits(n))); p && !(n % p);
    a(n) = sumdiv(n, d, iszu(d)); \\ Michel Marcus, Jun 03 2020

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A007602(n) = 3.26046... . - Amiram Eldar, Jan 01 2024

A355770 a(n) is the number of terms of A333369 that divide n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
Offset: 1

Views

Author

Bernard Schott, Jul 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
  • Python
    from sympy import divisors
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
    

Extensions

More terms from Michael S. Branicky, Jul 16 2022

A355695 a(n) is the smallest number that has exactly n nonpalindromic divisors (A029742).

Original entry on oeis.org

1, 10, 20, 30, 48, 72, 60, 140, 144, 120, 210, 180, 300, 240, 560, 504, 360, 420, 780, 1764, 900, 960, 720, 1200, 840, 1560, 2640, 1260, 1440, 2400, 3900, 3024, 1680, 3120, 2880, 4800, 7056, 3600, 2520, 3780, 3360, 5460, 6480, 16848, 6300, 8820, 7200, 9240, 6720, 12480, 5040
Offset: 0

Views

Author

Bernard Schott, Jul 14 2022

Keywords

Examples

			48 has 10 divisors: {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}, only 12, 16, 24 and 48 are nonpalindromic; no positive integer smaller than 48 has four nonpalindromic divisors, hence a(4) = 48.
		

Crossrefs

Similar sequences: A087997, A333456, A355303, A355594.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, ! PalindromeQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^5] (* Amiram Eldar, Jul 14 2022 *)
  • PARI
    isnp(n) = my(d=digits(n)); d!=Vecrev(d); \\ A029742
    a(n) = my(k=1); while (sumdiv(k, d, isnp(d)) != n, k++); k; \\ Michel Marcus, Jul 14 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return s != s[::-1]
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen():
        n, adict = 0, dict()
        for k in count(1):
            fk = f(k)
            if fk not in adict: adict[fk] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 51))) # Michael S. Branicky, Jul 27 2022

Extensions

More terms from Michel Marcus, Jul 14 2022

A179937 a(n) is the product of the non-palindromic divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 200, 21, 1, 23, 288, 25, 338, 27, 392, 29, 4500, 31, 512, 1, 578, 35, 7776, 37, 722, 507, 8000, 41, 12348, 43, 1, 675, 1058, 47, 221184, 49, 12500, 867, 17576, 53, 26244, 1, 21952, 1083, 1682, 59
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of non-palindromic divisors is {10, 20}; a(12) = 10*20 = 200.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Select[Divisors[n],!PalindromeQ[#]&],{n,60}] (* Harvey P. Dale, May 15 2023 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A179937(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and not ispal(i):
                s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A184392(n).

Extensions

More terms from Indranil Ghosh, Feb 10 2017

A184392 a(n) is the product of palindromic divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 10, 11, 144, 1, 14, 15, 64, 1, 324, 1, 40, 21, 484, 1, 1152, 5, 2, 27, 56, 1, 180, 1, 64, 1089, 2, 35, 1296, 1, 2, 3, 320, 1, 252, 1, 85184, 135, 2, 1, 1152, 7, 10, 3, 8, 1, 324, 3025, 448, 3, 2, 1, 720, 1, 2, 189, 64, 5, 18974736, 1, 8, 3, 70, 1, 10368, 1, 2, 15, 8, 5929, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 59969536, 1, 1620, 7, 8, 3, 2, 5, 1152, 1, 14, 970299, 40
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of palindromic divisors is {1, 2, 4, 5}; a(12) = 1*2*4*5 = 40.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; f[n_]:=Times@@Select[Divisors[n],palQ]; Table[f[n],{n,100}]  (* Harvey P. Dale, Jan 21 2011 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A184392(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and ispal(i):
                 s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A179937(n).

Extensions

More terms from Harvey P. Dale, Jan 21 2011
Showing 1-10 of 11 results. Next