cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A084325 Palindromes such that at least one divisor is non-palindromic; palindromes not in A062687.

Original entry on oeis.org

111, 141, 161, 171, 212, 222, 232, 252, 272, 282, 292, 323, 333, 343, 414, 424, 434, 444, 454, 464, 474, 494, 515, 525, 535, 545, 555, 565, 575, 585, 595, 616, 636, 646, 656, 666, 676, 686, 696, 717, 737, 747, 767, 777, 818, 828, 838, 848, 858, 868, 878
Offset: 1

Views

Author

Jason Earls, Jun 21 2003

Keywords

Examples

			141 is in the sequence because the divisors of 141 are 1, 3, 47 and 141, from which 47 is the only non-palindromic number. - _Indranil Ghosh_, Feb 10 2017
		

Programs

  • Mathematica
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; Select[Range[880], palQ[#] && And @@ palQ /@ Divisors[#] == False &] (* Jayanta Basu, Aug 10 2013 *)

A084982 Erroneous version of A062687.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 151, 181
Offset: 1

Views

Author

Keywords

A087992 Duplicate of A062687.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 121, 131, 151, 181, 191
Offset: 1

Views

Author

Keywords

A087990 Number of palindromic divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 2, 4, 1, 4, 4
Offset: 1

Views

Author

Labos Elemer, Oct 08 2003

Keywords

Examples

			n=132: divisors={1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132}, revdivisors={1, 2, 3, 4, 6, 11, 21, 22, 33, 44, 66, 231}, a[132]=10; so 10 of 12 divisors of n are palindromic: {1, 2, 3, 4, 6, 11, 22, 33, 44, 66}.
		

Crossrefs

Programs

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A118031 = 3.370283... . - Amiram Eldar, Jan 01 2024

A329419 Numbers all of whose divisors are binary palindromes.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 45, 51, 63, 73, 85, 93, 107, 119, 127, 153, 189, 219, 255, 257, 313, 365, 381, 443, 511, 765, 771, 1193, 1241, 1285, 1453, 1533, 1571, 1619, 1787, 1799, 1831, 1879, 2313, 3579, 3855, 4369, 4889, 5113, 5189, 5397, 5557, 5869
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2019

Keywords

Comments

Subsequence of A163410, and differs from it from n = 65.

Examples

			15 is in the sequence since the binary representations of its divisors, 1, 3, 5, and 15, are all palindromes: 1, 11, 101, and 1111.
		

Crossrefs

Supersequence of A016041.

Programs

  • Mathematica
    binPalQ[n_] := PalindromeQ @ IntegerDigits[n, 2]; seqQ[n_] := binPalQ[n] && AllTrue[Most @ Divisors[n], binPalQ]; Select[Range[10^4], seqQ]

A087991 Number of non-palindromic divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 0, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 0, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 0, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 0, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 0, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 0, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 0, 5, 0, 4, 1, 4, 4
Offset: 1

Views

Author

Labos Elemer, Oct 08 2003

Keywords

Examples

			For n = 132: divisors = {1,2,3,4,6,11,12,22,33,44,66,132}, revdivisors = {1,2,3,4,6,11,21,22,33,44,66,231}, two of the 12 divisors of n are non-palindromic: {21,132}, so a(132) = 2.
		

Crossrefs

Programs

Formula

a(n) = A000005(n) - A087990(n).
Sum_{k=1..n} a(k) ~ n * (log(n) + c), where c = 2*A001620 - 1 - A118031 = -3.2158519... . - Amiram Eldar, Apr 17 2025

A093696 Numbers n such that all divisors of n have an odd number of 1's in their binary expansions.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 22, 26, 28, 31, 32, 37, 38, 41, 44, 47, 49, 52, 56, 59, 61, 62, 64, 67, 73, 74, 76, 79, 82, 88, 91, 94, 97, 98, 103, 104, 107, 109, 112, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 143, 146, 148, 151, 152, 157, 158, 164, 167, 173
Offset: 1

Views

Author

Jason Earls, May 16 2004

Keywords

Comments

Subsequence of A000069. - Michel Marcus, Feb 09 2014
Numbers all of whose divisors are odious. - Bernard Schott, Jul 22 2022

Examples

			14 is in the sequence because its divisors are [1, 2, 7, 14] and in binary: 1, 10, 111 and 1110, all have an odd number of 1's.
		

Crossrefs

Similar sequences: A062687, A190217, A337741, A337941, A355596.
A000079 is a subsequence.

Programs

  • Maple
    isA001969 := proc(n)
        if wt(n) mod 2 = 0 then
            true;
        else
            false;
        end if;
    end proc:
    isA093696 := proc(n)
        for d in numtheory[divisors](n) do
            if isA001969(d) then
                return false;
            end if;
        end do;
        true;
    end proc:
    for n from 1 to 200 do
        if isA093696(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Feb 13 2014
  • Mathematica
    odiousQ[n_] := OddQ @ DigitCount[n, 2][[1]]; Select[Range[200], AllTrue[ Divisors[#], odiousQ ] &] (* Amiram Eldar, Dec 09 2019 *)
  • PARI
    is(n)=fordiv(n,d,if(hammingweight(d)%2==0, return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013
    
  • Python
    from sympy import divisors, isprime
    def c(n): return bin(n).count("1")&1
    def ok(n): return n > 0 and all(c(d) for d in divisors(n, generator=True))
    print([k for k in range(174) if ok(k)]) # Michael S. Branicky, Jul 24 2022

Formula

{n: A356018(n) =0 }. - R. J. Mathar, Aug 07 2022

A088000 a(n) is the sum of the palindromic divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
Offset: 1

Views

Author

Labos Elemer, Oct 14 2003

Keywords

Examples

			n=14: a(14)=1+2+7=10;
n=101: a(101)=1+101=102;
		

Crossrefs

Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors).

Programs

  • Maple
    A088000 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isA002113(d) then
                a := a+d ;
            end if;
        end do;
        a ;
    end proc:
    seq(A088000(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)
  • PARI
    a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A088000(n):
        s=0
        for i in range(1, n+1):
            if n%i==0 and ispal(i):
                 s+=i
        return s
    print([A088000(n) for n in range(1,30)]) # Indranil Ghosh, Feb 10 2017
    

A308851 Numbers >= 2 all of whose divisors > 1 are Brazilian.

Original entry on oeis.org

7, 13, 31, 43, 73, 91, 127, 157, 211, 217, 241, 301, 307, 403, 421, 463, 511, 559, 601, 757, 889, 949, 1093, 1099, 1123, 1333, 1477, 1483, 1651, 1687, 1723, 2041, 2149, 2263, 2551, 2743, 2801, 2821, 2947, 2971, 3133, 3139, 3241, 3307, 3541, 3907, 3913, 3937
Offset: 1

Views

Author

Bernard Schott, Jun 28 2019

Keywords

Comments

The terms of this sequence are the Brazilian primes and the products of two or more distinct Brazilian primes.
There are no even numbers because 2 is not Brazilian.

Examples

			91 is a term because all divisors of 91 that are > 1: {7, 13, 91} are Brazilian numbers with 7 = 111_2, 13 = 111_3 and 91 = 77_12.
		

Crossrefs

Cf. A085104 (subsequence), A125134.
Similar with even numbers: A000079, with odd numbers: A005408, with palindromes: A062687, with repdigits: A190217.

Programs

  • Mathematica
    brazQ[n_] := Block[{k, b, ok}, If[FindInstance[k (1 + b) == n && 1 < b < n - 1 && 0 < k < b, {k, b}, Integers] != {}, True, b = 2; ok = False; While[1 + b + b^2 <= n && ! ok, ok = Length@ Union@ IntegerDigits[n, b++] == 1]; ok]]; Select[ Range[3, 4000, 2], AllTrue[ Rest@ Divisors@ #, brazQ] &] (* Giovanni Resta, Jun 29 2019 *)
    max = 5000; fQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; A125134 = Select[Range[4, max], fQ]; Select[Range[2, max], Intersection[A125134, Rest[Divisors[#]]] == Rest[Divisors[#]] &] (* Vaclav Kotesovec, Jun 29 2019, using a subroutine from T. D. Noe *)
  • PARI
    isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1)));
    isok(n) = {fordiv(n, d, if ((d>1) && ! isb(d), return (0));); return (1);} \\ Michel Marcus, Jun 29 2019

A337741 Numbers all of whose divisors are Niven numbers (A005349).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 36, 40, 54, 63, 72, 81, 108, 162, 216, 243, 324, 486, 648, 972, 1944
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

Since the only prime Niven numbers are the single-digit primes 2, 3, 5 and 7, all the terms are 7-smooth numbers (A002473).
If k is a term, all the divisors of k are also terms. Since all the terms are 7-smooth, every term is of the form p * k, where p is in {2, 3, 5, 7} and k is a smaller term. Thus it is easy to verify that there are only 31 terms in this sequence, and 1944 being the last term.

Examples

			6 is a term since all the divisors of 6, i.e., 1, 2, 3 and 6, are Niven numbers.
		

Crossrefs

Subsequence of A002473 and A005349.
Similar sequences: A062687, A190217, A329419.

Programs

  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; allQ[n_] := AllTrue[Divisors[n], nivenQ]; p = {1, 2, 3, 5, 7}; s = {1}; n = 0; While[Length[s] != n, n = Length[s]; s = Select[Union @ Flatten @ Outer[Times, s, p], allQ]]; s
Showing 1-10 of 24 results. Next