cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A183106 Numbers k such that sum of palindromic divisors of k (A088000(k)) is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 13, 15, 17, 19, 21, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 103, 106, 107, 109, 112, 113, 115, 116, 118, 119
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			a(12) = 21; palindromic divisors of 21: 1, 3, 7; their sum is 11 (palindromic number).
		

Crossrefs

Subsequences: A334321, A334391.

Programs

  • Maple
    isA183106 := proc(n)
        isA002113(A088000(n)) ;
    end proc:
    for n from 1 to 100 do
        if isA183106(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    q[k_] := PalindromeQ[DivisorSum[k, # &, PalindromeQ[#] &]]; Select[Range[120], q] (* Amiram Eldar, Aug 08 2024 *)

Formula

A088000(a(n)) = A183107(n).

Extensions

More terms from Amiram Eldar, Aug 08 2024

A087990 Number of palindromic divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 2, 4, 1, 4, 4
Offset: 1

Views

Author

Labos Elemer, Oct 08 2003

Keywords

Examples

			n=132: divisors={1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132}, revdivisors={1, 2, 3, 4, 6, 11, 21, 22, 33, 44, 66, 231}, a[132]=10; so 10 of 12 divisors of n are palindromic: {1, 2, 3, 4, 6, 11, 22, 33, 44, 66}.
		

Crossrefs

Programs

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A118031 = 3.370283... . - Amiram Eldar, Jan 01 2024

A088001 a(n) is the sum of non-palindromic divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 21, 0, 23, 36, 25, 39, 27, 42, 29, 55, 31, 48, 0, 51, 35, 66, 37, 57, 52, 70, 41, 77, 43, 0, 60, 69, 47, 100, 49, 85, 68, 91, 53, 99, 0, 98, 76, 87, 59, 147, 61, 93, 84, 112, 78, 0, 67, 119, 92, 129, 71, 162, 73
Offset: 1

Views

Author

Labos Elemer, Oct 14 2003

Keywords

Crossrefs

Programs

  • Maple
    A088001 := proc(n)
            numtheory[sigma](n)-A088000(n) ;
    end proc; # R. J. Mathar, Jul 28 2016
  • Mathematica
    Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] != x &], {k, 73}] (* Jayanta Basu, Aug 12 2013 *)
    Table[Total[Select[Divisors[n],!PalindromeQ[#]&]],{n,80}] (* Harvey P. Dale, May 15 2025 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A088001(n):
        s=0
        for i in range(1, n+1):
            if n%i==0 and not ispal(i):
                 s+=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n)=0 iff all divisors are palindromic. See A062687.
a(n)+A088000(n) = A000203(n). - R. J. Mathar, Sep 09 2015

A179937 a(n) is the product of the non-palindromic divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 200, 21, 1, 23, 288, 25, 338, 27, 392, 29, 4500, 31, 512, 1, 578, 35, 7776, 37, 722, 507, 8000, 41, 12348, 43, 1, 675, 1058, 47, 221184, 49, 12500, 867, 17576, 53, 26244, 1, 21952, 1083, 1682, 59
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of non-palindromic divisors is {10, 20}; a(12) = 10*20 = 200.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Select[Divisors[n],!PalindromeQ[#]&],{n,60}] (* Harvey P. Dale, May 15 2023 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A179937(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and not ispal(i):
                s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A184392(n).

Extensions

More terms from Indranil Ghosh, Feb 10 2017

A184392 a(n) is the product of palindromic divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 10, 11, 144, 1, 14, 15, 64, 1, 324, 1, 40, 21, 484, 1, 1152, 5, 2, 27, 56, 1, 180, 1, 64, 1089, 2, 35, 1296, 1, 2, 3, 320, 1, 252, 1, 85184, 135, 2, 1, 1152, 7, 10, 3, 8, 1, 324, 3025, 448, 3, 2, 1, 720, 1, 2, 189, 64, 5, 18974736, 1, 8, 3, 70, 1, 10368, 1, 2, 15, 8, 5929, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 59969536, 1, 1620, 7, 8, 3, 2, 5, 1152, 1, 14, 970299, 40
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 20, set of palindromic divisors is {1, 2, 4, 5}; a(12) = 1*2*4*5 = 40.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; f[n_]:=Times@@Select[Divisors[n],palQ]; Table[f[n],{n,100}]  (* Harvey P. Dale, Jan 21 2011 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A184392(n):
        s=1
        for i in range(1, n+1):
            if n%i==0 and ispal(i):
                 s*=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n) = A007955(n) / A179937(n).

Extensions

More terms from Harvey P. Dale, Jan 21 2011

A183107 Sum of palindromic divisors of numbers k such that the sum of the palindromic divisors of k is palindromic.

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 8, 1, 9, 1, 1, 11, 1, 6, 3, 1, 1, 3, 1, 3, 4, 1, 1, 3, 1, 8, 8, 4, 7, 1, 22, 4, 3, 1, 1, 3, 6, 1, 7, 4, 1, 33, 1, 3, 9, 7, 1, 3, 1, 6, 3, 4, 1, 8, 7, 4, 3, 6, 1, 1, 3, 1, 1, 22, 1, 6, 7, 3, 8, 3, 4, 7, 6, 1, 4, 8, 8, 3, 1, 1, 3, 33, 6, 3, 11, 7, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := DivisorSum[k, # &, PalindromeQ[#] &]; Select[f /@ Range[150], PalindromeQ] (* Amiram Eldar, Aug 08 2024 *)

Formula

a(n) = A088000(A183106(n)).

Extensions

More terms from Amiram Eldar, Aug 08 2024

A183108 Numbers m such that sum of divisors of m and sum of palindromic divisors of m are both palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 43, 130, 146, 166, 201, 205, 211, 221, 241, 244, 251, 271, 274, 281, 314, 325, 365, 388, 422, 433, 443, 463, 489, 519, 559, 633, 685, 793, 827, 857, 877, 887, 1841, 2021, 2111, 2221, 2284, 2305, 2441, 2551, 2561, 2666, 2751, 2881
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Numbers m such that A000203(m) and A088000(m) are both palindromic.

Examples

			a(8) = 130, divisors of 130: 1, 2, 5, 10, 13, 26, 65, 130; palindromic divisors of 130: 1, 2, 5; A000203(130) = 252, A088000(130) = 8; both numbers are palindromic.
		

Crossrefs

Programs

  • Sage
    is_palindrome = lambda n, base=10: n.str(base) == n.str(base)[::-1]
    A000203 = sigma
    A088000 = lambda n: sum(d for d in divisors(n) if is_palindrome(d))
    is_A183108 = lambda n: is_palindrome(A000203(n)) and is_palindrome(A088000(n)) # D. S. McNeil, Dec 28 2010
Showing 1-7 of 7 results.